|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-319-20221-1 |
003 |
DE-He213 |
005 |
20220113055712.0 |
007 |
cr nn 008mamaa |
008 |
150724s2016 sz | s |||| 0|eng d |
020 |
|
|
|a 9783319202211
|9 978-3-319-20221-1
|
024 |
7 |
|
|a 10.1007/978-3-319-20221-1
|2 doi
|
050 |
|
4 |
|a QC793-793.5
|
050 |
|
4 |
|a QC174.45-174.52
|
072 |
|
7 |
|a PHP
|2 bicssc
|
072 |
|
7 |
|a SCI051000
|2 bisacsh
|
072 |
|
7 |
|a PHP
|2 thema
|
082 |
0 |
4 |
|a 530.14
|2 23
|
100 |
1 |
|
|a Hall, Nathan L.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Hadron Structure in Electroweak Precision Measurements
|h [electronic resource] /
|c by Nathan L. Hall.
|
250 |
|
|
|a 1st ed. 2016.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2016.
|
300 |
|
|
|a XIV, 120 p. 47 illus., 29 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5061
|
505 |
0 |
|
|a Introduction -- The Standard Model and beyond -- Precision tests of the SM -- Structure functions -- Adelaide-Jefferson Lab-Manitoba model -- The γZ box corrections -- Electric and magnetic polarizabilities of the proton -- Quark-hadron duality -- Summary and conclusion.
|
520 |
|
|
|a This thesis examines the γZ box contribution to the weak charge of the proton. Here, by combining recent parity-violating electron-deuteron scattering data with our current understanding of parton distribution functions, the author shows that one can limit this model dependence. The resulting construction is a robust model of the γγ and γZ structure functions that can also be used to study a variety of low-energy phenomena. Two such cases are discussed in this work, namely, the nucleon's electromagnetic polarizabilities and quark-hadron duality. By using phenomenological information to constrain the input structure functions, this important but previously poorly understood radiative correction is determined at the kinematics of the parity-violating experiment, QWEAK, to a degree of precision more than twice that of the previous best estimate. A detailed investigation into available parametrizations of the electromagnetic and interference cross-sections indicates that earlier analyses suffered from the inability to correctly quantify their model dependence.
|
650 |
|
0 |
|a Elementary particles (Physics).
|
650 |
|
0 |
|a Quantum field theory.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
1 |
4 |
|a Elementary Particles, Quantum Field Theory.
|
650 |
2 |
4 |
|a Theoretical, Mathematical and Computational Physics.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319202204
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319202228
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319369938
|
830 |
|
0 |
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5061
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-319-20221-1
|z Texto Completo
|
912 |
|
|
|a ZDB-2-PHA
|
912 |
|
|
|a ZDB-2-SXP
|
950 |
|
|
|a Physics and Astronomy (SpringerNature-11651)
|
950 |
|
|
|a Physics and Astronomy (R0) (SpringerNature-43715)
|