Cargando…

An Introduction to Machine Learning

This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, lin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kubat, Miroslav (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-20010-1
003 DE-He213
005 20220120210254.0
007 cr nn 008mamaa
008 150715s2015 sz | s |||| 0|eng d
020 |a 9783319200101  |9 978-3-319-20010-1 
024 7 |a 10.1007/978-3-319-20010-1  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Kubat, Miroslav.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Machine Learning  |h [electronic resource] /  |c by Miroslav Kubat. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 291 p. 71 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a A Simple Machine-Learning Task -- Probabilities: Bayesian Classifiers -- Similarities: Nearest-Neighbor Classifiers -- Inter-Class Boundaries: Linear and Polynomial Classifiers -- Artificial Neural Networks -- Decision Trees -- Computational Learning Theory -- A Few Instructive Applications -- Induction of Voting Assemblies -- Some Practical Aspects to Know About -- Performance Evaluation.-Statistical Significance -- The Genetic Algorithm -- Reinforcement learning. 
520 |a This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of "boosting," how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. 
650 0 |a Artificial intelligence. 
650 0 |a Computer simulation. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Automated Pattern Recognition. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319200095 
776 0 8 |i Printed edition:  |z 9783319200118 
776 0 8 |i Printed edition:  |z 9783319348865 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-20010-1  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)