Cargando…

Elliptic-Hyperbolic Partial Differential Equations A Mini-Course in Geometric and Quasilinear Methods /

This text is a concise introduction to the partial differential equations which change from elliptic to hyperbolic type across a smooth hypersurface of their domain. These are becoming increasingly important in diverse sub-fields of both applied mathematics and engineering, for example:   • The heat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Otway, Thomas H. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-19761-6
003 DE-He213
005 20220115013338.0
007 cr nn 008mamaa
008 150708s2015 sz | s |||| 0|eng d
020 |a 9783319197616  |9 978-3-319-19761-6 
024 7 |a 10.1007/978-3-319-19761-6  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Otway, Thomas H.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Elliptic-Hyperbolic Partial Differential Equations  |h [electronic resource] :  |b A Mini-Course in Geometric and Quasilinear Methods /  |c by Thomas H. Otway. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VII, 128 p. 15 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 
505 0 |a Introduction -- Overview of elliptic-hyperbolic PDE -- Hodograph and partial hodograph methods -- Boundary value problems -- B¨acklund transformations and Hodge-theoretic methods -- Natural focusing. 
520 |a This text is a concise introduction to the partial differential equations which change from elliptic to hyperbolic type across a smooth hypersurface of their domain. These are becoming increasingly important in diverse sub-fields of both applied mathematics and engineering, for example:   • The heating of fusion plasmas by electromagnetic waves • The behaviour of light near a caustic • Extremal surfaces in the space of special relativity • The formation of rapids; transonic and multiphase fluid flow • The dynamics of certain models for elastic structures • The shape of industrial surfaces such as windshields and airfoils • Pathologies of traffic flow • Harmonic fields in extended projective space   They also arise in models for the early universe, for cosmic acceleration, and for possible violation of causality in the interiors of certain compact stars. Within the past 25 years, they have become central to the isometric embedding of Riemannian manifolds and the prescription of Gauss curvature for surfaces: topics in pure mathematics which themselves have important applications.   Elliptic−Hyperbolic Partial Differential Equations is derived from a mini-course given at the ICMS Workshop on Differential Geometry and Continuum Mechanics held in Edinburgh, Scotland in June 2013. The focus on geometry in that meeting is reflected in these notes, along with the focus on quasilinear equations. In the spirit of the ICMS workshop, this course is addressed both to applied mathematicians and to mathematically-oriented engineers. The emphasis is on very recent applications and methods, the majority of which have not previously appeared in book form. 
650 0 |a Differential equations. 
650 0 |a Mathematical physics. 
650 1 4 |a Differential Equations. 
650 2 4 |a Mathematical Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319197623 
776 0 8 |i Printed edition:  |z 9783319197609 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-19761-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)