Cargando…

Sampling Theory, a Renaissance Compressive Sensing and Other Developments /

Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon's classical sampling theorem, a central pillar of Sampling Theory. The...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Pfander, Götz E. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Edición:1st ed. 2015.
Colección:Applied and Numerical Harmonic Analysis,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-19749-4
003 DE-He213
005 20220117115423.0
007 cr nn 008mamaa
008 151208s2015 sz | s |||| 0|eng d
020 |a 9783319197494  |9 978-3-319-19749-4 
024 7 |a 10.1007/978-3-319-19749-4  |2 doi 
050 4 |a QA76.9.M35 
072 7 |a UYA  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
245 1 0 |a Sampling Theory, a Renaissance  |h [electronic resource] :  |b Compressive Sensing and Other Developments /  |c edited by Götz E. Pfander. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XIV, 532 p. 69 illus., 40 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
505 0 |a Part I: Sparsity Models -- Estimation in High Dimensions: A Geometric Perspective -- Convex Recovery of a Structured Signal from Independent Random Linear Measurements -- Low Complexity Regularization of Linear Inverse Problems -- Part II: Frames with Benefits -- Noise-shaping Quantization Methods for Frame-based and Compressive Sampling Systems -- Fourier Operations in Applied Harmonic Analysis.- The Fundamentals of Spectral Tetris Frame Constructions -- Part III: Bandlimitation Recast -- System Approximation and Generalized Measurements in Modern Sampling Theory -- Entire Functions in Generalized Bernstein Spaces and Their Growth Behavior -- Sampling and Geometry -- A Sheaf-theoretic Perspective on Sampling -- Part IV: Solutions of Parametric PDEs -- How to Best Sample a Solution Manifold? -- On the Stability of Polynomial Interpolation using Hierarchical Sampling -- Part V: Implementation -- OperA: Operator-based Annihilation for Finite-Rate-of-Innovation Signal Sampling -- Digital Adaptive Calibration of Data Converters using Independent Component Analysis. 
520 |a Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon's classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology. 
650 0 |a Computer science-Mathematics. 
650 0 |a Signal processing. 
650 0 |a Approximation theory. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Functions of a Complex Variable. 
700 1 |a Pfander, Götz E.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319197487 
776 0 8 |i Printed edition:  |z 9783319197500 
776 0 8 |i Printed edition:  |z 9783319792866 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-19749-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)