Cargando…

Parabolic Equations in Biology Growth, reaction, movement and diffusion /

This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dyna...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Perthame, Benoît (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Lecture Notes on Mathematical Modelling in the Life Sciences,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-19500-1
003 DE-He213
005 20220119134515.0
007 cr nn 008mamaa
008 150909s2015 sz | s |||| 0|eng d
020 |a 9783319195001  |9 978-3-319-19500-1 
024 7 |a 10.1007/978-3-319-19500-1  |2 doi 
050 4 |a QH323.5 
050 4 |a QH324.2-324.25 
072 7 |a PBW  |2 bicssc 
072 7 |a PSA  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PSAX  |2 thema 
082 0 4 |a 570.285  |2 23 
100 1 |a Perthame, Benoît.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Parabolic Equations in Biology  |h [electronic resource] :  |b Growth, reaction, movement and diffusion /  |c by Benoît Perthame. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 199 p. 39 illus., 13 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes on Mathematical Modelling in the Life Sciences,  |x 2193-4797 
505 0 |a 1.Parabolic Equations in Biology -- 2.Relaxation, Perturbation and Entropy Methods -- 3.Weak Solutions of Parabolic Equations in whole Space -- 4.Traveling Waves -- 5.Spikes, Spots and Pulses -- 6.Blow-up and Extinction of Solutions -- 7.Linear Instability, Turing Instability and Pattern Formation -- 8.The Fokker-Planck Equation -- 9.From Jumps and Scattering to the Fokker-Planck Equation -- 10.Fast Reactions and the Stefan free Boundary Problem. 
520 |a This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework. 
650 0 |a Biomathematics. 
650 0 |a Mathematics. 
650 1 4 |a Mathematical and Computational Biology. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319195018 
776 0 8 |i Printed edition:  |z 9783319194998 
830 0 |a Lecture Notes on Mathematical Modelling in the Life Sciences,  |x 2193-4797 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-19500-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)