Cargando…

Introduction to Sofic and Hyperlinear Groups and Connes' Embedding Conjecture

This monograph presents some cornerstone results in the study of sofic and hyperlinear groups and the closely related Connes' embedding conjecture. These notions, as well as the proofs of many results, are presented in the framework of model theory for metric structures. This point of view, rar...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Capraro, Valerio (Autor), Lupini, Martino (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Lecture Notes in Mathematics, 2136
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-19333-5
003 DE-He213
005 20220120040950.0
007 cr nn 008mamaa
008 151012s2015 sz | s |||| 0|eng d
020 |a 9783319193335  |9 978-3-319-19333-5 
024 7 |a 10.1007/978-3-319-19333-5  |2 doi 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Capraro, Valerio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Sofic and Hyperlinear Groups and Connes' Embedding Conjecture  |h [electronic resource] /  |c by Valerio Capraro, Martino Lupini. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VIII, 151 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2136 
505 0 |a Introduction -- Sofic and hyperlinear groups -- Connes' embedding conjecture -- Conclusions. 
520 |a This monograph presents some cornerstone results in the study of sofic and hyperlinear groups and the closely related Connes' embedding conjecture. These notions, as well as the proofs of many results, are presented in the framework of model theory for metric structures. This point of view, rarely explicitly adopted in the literature, clarifies the ideas therein, and provides additional tools to attack open problems. Sofic and hyperlinear groups are countable discrete groups that can be suitably approximated by finite symmetric groups and groups of unitary matrices. These deep and fruitful notions, introduced by Gromov and Radulescu, respectively, in the late 1990s, stimulated an impressive amount of research in the last 15 years, touching several seemingly distant areas of mathematics including geometric group theory, operator algebras, dynamical systems, graph theory, and quantum information theory. Several long-standing conjectures, still open for arbitrary groups, are now settled for sofic or hyperlinear groups. The presentation is self-contained and accessible to anyone with a graduate-level mathematical background. In particular, no specific knowledge of logic or model theory is required. The monograph also contains many exercises, to help familiarize the reader with the topics present. 
650 0 |a Group theory. 
650 0 |a Operator theory. 
650 1 4 |a Group Theory and Generalizations. 
650 2 4 |a Operator Theory. 
700 1 |a Lupini, Martino.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319193328 
776 0 8 |i Printed edition:  |z 9783319193342 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2136 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-19333-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)