Cargando…

Bayesian Nonparametric Data Analysis

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book's structure follows a data analysis perspective. As such, the chapters are organized by traditional d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Müller, Peter (Autor), Quintana, Fernando Andres (Autor), Jara, Alejandro (Autor), Hanson, Tim (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-18968-0
003 DE-He213
005 20220117132719.0
007 cr nn 008mamaa
008 150617s2015 sz | s |||| 0|eng d
020 |a 9783319189680  |9 978-3-319-18968-0 
024 7 |a 10.1007/978-3-319-18968-0  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Müller, Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bayesian Nonparametric Data Analysis  |h [electronic resource] /  |c by Peter Müller, Fernando Andres Quintana, Alejandro Jara, Tim Hanson. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 193 p. 59 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X 
505 0 |a Preface -- Acronyms -- 1.Introduction -- 2.Density Estimation - DP Models -- 3.Density Estimation - Models Beyond the DP -- 4.Regression -- 5.Categorical Data -- 6.Survival Analysis -- 7.Hierarchical Models -- 8.Clustering and Feature Allocation -- 9.Other Inference Problems and Conclusions -- Appendix: DP package. 
520 |a This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book's structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in on-line software pages. 
650 0 |a Statistics . 
650 0 |a Mathematical statistics-Data processing. 
650 0 |a Biometry. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing. 
650 2 4 |a Biostatistics. 
700 1 |a Quintana, Fernando Andres.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Jara, Alejandro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Hanson, Tim.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319189697 
776 0 8 |i Printed edition:  |z 9783319189673 
776 0 8 |i Printed edition:  |z 9783319368429 
830 0 |a Springer Series in Statistics,  |x 2197-568X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-18968-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)