Cargando…

Harmonic and Applied Analysis From Groups to Signals /

This contributed volume explores the connection between the theoretical aspects of harmonic analysis and the construction of advanced multiscale representations that have emerged in signal and image processing. It highlights some of the most promising mathematical developments in harmonic analysis i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Dahlke, Stephan (Editor ), De Mari, Filippo (Editor ), Grohs, Philipp (Editor ), Labate, Demetrio (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Edición:1st ed. 2015.
Colección:Applied and Numerical Harmonic Analysis,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-18863-8
003 DE-He213
005 20220120161825.0
007 cr nn 008mamaa
008 150912s2015 sz | s |||| 0|eng d
020 |a 9783319188638  |9 978-3-319-18863-8 
024 7 |a 10.1007/978-3-319-18863-8  |2 doi 
050 4 |a QA403-403.3 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.785  |2 23 
245 1 0 |a Harmonic and Applied Analysis  |h [electronic resource] :  |b From Groups to Signals /  |c edited by Stephan Dahlke, Filippo De Mari, Philipp Grohs, Demetrio Labate. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XV, 256 p. 13 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
505 0 |a From Group Representations to Signal Analysis -- The Use of Representations in Applied Harmonic Analysis -- Shearlet Coorbit Theory -- Efficient Analysis and Detection of Edges through Directional Multiscale Representations -- Optimally Sparse Data Representations. 
520 |a This contributed volume explores the connection between the theoretical aspects of harmonic analysis and the construction of advanced multiscale representations that have emerged in signal and image processing. It highlights some of the most promising mathematical developments in harmonic analysis in the last decade brought about by the interplay among different areas of abstract and applied mathematics. This intertwining of ideas is considered starting from the theory of unitary group representations and leading to the construction of very efficient schemes for the analysis of multidimensional data. After an introductory chapter surveying the scientific significance of classical and more advanced multiscale methods, chapters cover such topics as An overview of Lie theory focused on common applications in signal analysis, including the wavelet representation of the affine group, the Schrödinger representation of the Heisenberg group, and the metaplectic representation of the symplectic group An introduction to coorbit theory and how it can be combined with the shearlet transform to establish shearlet coorbit spaces Microlocal properties of the shearlet transform and its ability to provide a precise geometric characterization of edges and interface boundaries in images and other multidimensional data Mathematical techniques to construct optimal data representations for a number of signal types, with a focus on the optimal approximation of functions governed by anisotropic singularities. A unified notation is used across all of the chapters to ensure consistency of the mathematical material presented. Harmonic and Applied Analysis: From Groups to Signals is aimed at graduate students and researchers in the areas of harmonic analysis and applied mathematics, as well as at other applied scientists interested in representations of multidimensional data. It can also be used as a textbook for graduate courses in applied harmonic analysis. 
650 0 |a Harmonic analysis. 
650 0 |a Fourier analysis. 
650 0 |a Group theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Signal processing. 
650 1 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Signal, Speech and Image Processing . 
700 1 |a Dahlke, Stephan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a De Mari, Filippo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Grohs, Philipp.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Labate, Demetrio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319188621 
776 0 8 |i Printed edition:  |z 9783319188645 
776 0 8 |i Printed edition:  |z 9783319355962 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-18863-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)