Cargando…

Pole Solutions for Flame Front Propagation

This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kupervasser, Oleg (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Mathematical and Analytical Techniques with Applications to Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-18845-4
003 DE-He213
005 20220118094631.0
007 cr nn 008mamaa
008 150707s2015 sz | s |||| 0|eng d
020 |a 9783319188454  |9 978-3-319-18845-4 
024 7 |a 10.1007/978-3-319-18845-4  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
100 1 |a Kupervasser, Oleg.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Pole Solutions for Flame Front Propagation  |h [electronic resource] /  |c by Oleg Kupervasser. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 118 p. 37 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical and Analytical Techniques with Applications to Engineering,  |x 1559-7466 
505 0 |a Introduction -- Pole-Dynamics in Unstable Front Propagation: The Case of the Channel Geometry -- Using of Pole Dynamics for Stability Analysis of Premixed Flame Fronts: Dynamical Systems Approach in the Complex Plane -- Dynamics and Wrinkling of Radially Propagating Fronts Inferred from Scaling Laws in Channel Geometries -- Laplacian Growth Without Surface Tension in Filtration Combustion: Analytical Pole Solution -- Summary. 
520 |a This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Plasma (Ionized gases). 
650 0 |a Fluid mechanics. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Plasma Physics. 
650 2 4 |a Engineering Fluid Dynamics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319188461 
776 0 8 |i Printed edition:  |z 9783319188447 
776 0 8 |i Printed edition:  |z 9783319368818 
830 0 |a Mathematical and Analytical Techniques with Applications to Engineering,  |x 1559-7466 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-18845-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)