Cargando…

Space-Time Algebra

This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathemat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hestenes, David (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Edición:2nd ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-18413-5
003 DE-He213
005 20220114151059.0
007 cr nn 008mamaa
008 150425s2015 sz | s |||| 0|eng d
020 |a 9783319184135  |9 978-3-319-18413-5 
024 7 |a 10.1007/978-3-319-18413-5  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Hestenes, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Space-Time Algebra  |h [electronic resource] /  |c by David Hestenes. 
250 |a 2nd ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XXIV, 102 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface to the Second Edition -- Introduction -- Part I:Geometric Algebra -- 1.Intrepretation of Clifford Algebra -- 2.Definition of Clifford Algebra -- 3.Inner and Outer Products -- 4.Structure of Clifford Algebra -- 5.Reversion, Scalar Product -- 6.The Algebra of Space -- 7.The Algebra of Space-Time -- Part II:Electrodynamics -- 8.Maxwell's Equation -- 9.Stress-Energy Vectors -- 10.Invariants -- 11.  Free Fields -- Part III:Dirac Fields -- 12.Spinors -- 13.Dirac's Equation -- 14.Conserved Currents -- 15.C, P, T -- Part IV:Lorentz Transformations -- 16.Reflections and Rotations -- 17.Coordinate Transformations -- 18.Timelike Rotations -- 19.Scalar Product -- Part V:Geometric Calculus -- 20.Differentiation -- 21.Coordinate Transformations -- 22.Integration -- 23.Global and Local Relativity -- 24.Gauge Transformation and Spinor Derivatives -- Conclusion -- Appendices -- A.Bases and Pseudoscalars -- B.Some Theorems -- C.Composition of Spacial Rotations -- D.Matrix Representation of the Pauli Algebra. 
520 |a This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient 'toolkit' for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) - only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the 'Geometric Algebra', can be applied in many areas of engineering, robotics and computer science, with no changes necessary - it is the same underlying mathematics, and enables physicists to understand topics in engineering, and engineers to understand topics in physics (including aspects in frontier areas), in a way which no other single mathematical system could hope to make possible. There is another aspect to Geometric Algebra, which is less tangible, and goes beyond questions of mathematical power and range. This is the remarkable insight it gives to physical problems, and the way it constantly suggests new features of the physics itself, not just the mathematics. Examples of this are peppered throughout 'Space-Time Algebra', despite its short length, and some of them are effectively still research topics for the future. From the Foreward by Anthony Lasenby. 
650 0 |a Mathematical physics. 
650 0 |a Geometry, Differential. 
650 1 4 |a Mathematical Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319184142 
776 0 8 |i Printed edition:  |z 9783319184128 
776 0 8 |i Printed edition:  |z 9783319386881 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-18413-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)