Cargando…

Machine Learning in Radiation Oncology Theory and Applications /

This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: El Naqa, Issam (Editor ), Li, Ruijiang (Editor ), Murphy, Martin J. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-18305-3
003 DE-He213
005 20220119123204.0
007 cr nn 008mamaa
008 150619s2015 sz | s |||| 0|eng d
020 |a 9783319183053  |9 978-3-319-18305-3 
024 7 |a 10.1007/978-3-319-18305-3  |2 doi 
050 4 |a R895-920 
072 7 |a MMP  |2 bicssc 
072 7 |a MED080000  |2 bisacsh 
072 7 |a MKS  |2 thema 
082 0 4 |a 616.0757  |2 23 
245 1 0 |a Machine Learning in Radiation Oncology  |h [electronic resource] :  |b Theory and Applications /  |c edited by Issam El Naqa, Ruijiang Li, Martin J. Murphy. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 336 p. 127 illus., 67 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction: What is Machine Learning -- Computational Learning Theory -- Overview of Supervised Learning Methods -- Overview of Unsupervised Learning Methods -- Performance Evaluation -- Variety of Applications in Radiation Oncology -- Machine Learning for Quality Assurance: Quality Assurance as a Learning Problem -- Detection of Radiotherapy Errors Using Unsupervised Learning -- Prediction of Radiotherapy Errors Using Supervised Learning -- Machine Learning for Computer-Aided Detection: Detection of Cancer Lesions from Imaging -- Classification of Malignant and Benign Tumours -- Machine Learning for Treatment Planning and Delivery -- Image-guided Radiotherapy with Machine Learning: IMRT Optimization Using Machine Learning -- Treatment Assessment Tools -- Machine Learning for Motion Management: Prediction of Respiratory Motion -- Motion-Correction Using Learning Methods -- Machine Learning Application in 4D-CT -- Machine Learning Application in Dynamic Delivery -- Machine Learning for Outcomes Modeling: Bioinformatics of Treatment Response -- Modelling of Norma Tissue Complication Probabilities (NTCP) -- Modelling of Tumour Control Probability (TCP). 
520 |a This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities. 
650 0 |a Radiology. 
650 0 |a Medical physics. 
650 1 4 |a Radiology. 
650 2 4 |a Medical Physics. 
700 1 |a El Naqa, Issam.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Li, Ruijiang.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Murphy, Martin J.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319183060 
776 0 8 |i Printed edition:  |z 9783319183046 
776 0 8 |i Printed edition:  |z 9783319354644 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-18305-3  |z Texto Completo 
912 |a ZDB-2-SME 
912 |a ZDB-2-SXM 
950 |a Medicine (SpringerNature-11650) 
950 |a Medicine (R0) (SpringerNature-43714)