Cargando…

Minimum Action Curves in Degenerate Finsler Metrics Existence and Properties /

Presenting a study of geometric action functionals (i.e., non-negative functionals on the space of unparameterized oriented rectifiable curves), this monograph focuses on the subclass of those functionals whose local action is a degenerate type of Finsler metric that may vanish in certain directions...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Heymann, Matthias (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Lecture Notes in Mathematics, 2134
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-17753-3
003 DE-He213
005 20220126174132.0
007 cr nn 008mamaa
008 150708s2015 sz | s |||| 0|eng d
020 |a 9783319177533  |9 978-3-319-17753-3 
024 7 |a 10.1007/978-3-319-17753-3  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Heymann, Matthias.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Minimum Action Curves in Degenerate Finsler Metrics  |h [electronic resource] :  |b Existence and Properties /  |c by Matthias Heymann. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 186 p. 14 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2134 
520 |a Presenting a study of geometric action functionals (i.e., non-negative functionals on the space of unparameterized oriented rectifiable curves), this monograph focuses on the subclass of those functionals whose local action is a degenerate type of Finsler metric that may vanish in certain directions, allowing for curves with positive Euclidean length but with zero action. For such functionals, criteria are developed under which there exists a minimum action curve leading from one given set to another. Then the properties of this curve are studied, and the non-existence of minimizers is established in some settings. Applied to a geometric reformulation of the quasipotential of Wentzell-Freidlin theory (a subfield of large deviation theory), these results can yield the existence and properties of maximum likelihood transition curves between two metastable states in a stochastic process with small noise. The book assumes only standard knowledge in graduate-level analysis; all higher-level mathematical concepts are introduced along the way.  . 
650 0 |a Probabilities. 
650 0 |a Geometry. 
650 0 |a Mathematical optimization. 
650 0 |a Mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Geometry. 
650 2 4 |a Optimization. 
650 2 4 |a Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319177540 
776 0 8 |i Printed edition:  |z 9783319177526 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2134 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-17753-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)