Cargando…

Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning

The book reports on a novel approach for holistically identifying the relevant state drivers of complex, multi-stage manufacturing systems. This approach is able to utilize complex, diverse and high-dimensional data sets, which often occur in manufacturing applications, and to integrate the importan...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wuest, Thorsten (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-17611-6
003 DE-He213
005 20220118210022.0
007 cr nn 008mamaa
008 150418s2015 sz | s |||| 0|eng d
020 |a 9783319176116  |9 978-3-319-17611-6 
024 7 |a 10.1007/978-3-319-17611-6  |2 doi 
050 4 |a T55.4-60.8 
072 7 |a TGP  |2 bicssc 
072 7 |a TEC009060  |2 bisacsh 
072 7 |a TGP  |2 thema 
082 0 4 |a 670  |2 23 
100 1 |a Wuest, Thorsten.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning  |h [electronic resource] /  |c by Thorsten Wuest. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVIII, 272 p. 139 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
505 0 |a Introduction -- Developments of manufacturing systems with a focus on product and process quality -- Current approaches with a focus on holistic information management in manufacturing -- Development of the product state concept -- Application of machine learning to identify state drivers -- Application of SVM to identify relevant state drivers -- Evaluation of the developed approach -- Recapitulation. 
520 |a The book reports on a novel approach for holistically identifying the relevant state drivers of complex, multi-stage manufacturing systems. This approach is able to utilize complex, diverse and high-dimensional data sets, which often occur in manufacturing applications, and to integrate the important process intra- and interrelations. The approach has been evaluated using three scenarios from different manufacturing domains (aviation, chemical and semiconductor). The results, which are reported in detail in this book, confirmed that it is possible to incorporate implicit process intra- and interrelations on both a process and programme level by applying SVM-based feature ranking. In practice, this method can be used to identify the most important process parameters and state characteristics, the so-called state drivers, of a manufacturing system. Given the increasing availability of data and information, this selection support can be directly utilized in, e.g., quality monitoring and advanced process control. Importantly, the method is neither limited to specific products, manufacturing processes or systems, nor by specific quality concepts. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 0 |a Computer-aided engineering. 
650 0 |a Production management. 
650 0 |a Computational intelligence. 
650 1 4 |a Industrial and Production Engineering. 
650 2 4 |a Computer-Aided Engineering (CAD, CAE) and Design. 
650 2 4 |a Operations Management. 
650 2 4 |a Computational Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319176123 
776 0 8 |i Printed edition:  |z 9783319176109 
776 0 8 |i Printed edition:  |z 9783319386980 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-17611-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)