Cargando…

Period Mappings with Applications to Symplectic Complex Spaces

Extending Griffiths' classical theory of period mappings for compact Kähler manifolds, this book develops and applies a theory of period mappings of "Hodge-de Rham type" for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kirschner, Tim (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Lecture Notes in Mathematics, 2140
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-17521-8
003 DE-He213
005 20220114120825.0
007 cr nn 008mamaa
008 150915s2015 sz | s |||| 0|eng d
020 |a 9783319175218  |9 978-3-319-17521-8 
024 7 |a 10.1007/978-3-319-17521-8  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Kirschner, Tim.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Period Mappings with Applications to Symplectic Complex Spaces  |h [electronic resource] /  |c by Tim Kirschner. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVIII, 275 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2140 
520 |a Extending Griffiths' classical theory of period mappings for compact Kähler manifolds, this book develops and applies a theory of period mappings of "Hodge-de Rham type" for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Frölicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkähler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely. 
650 0 |a Algebraic geometry. 
650 0 |a Functions of complex variables. 
650 0 |a Algebra, Homological. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Category Theory, Homological Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319175201 
776 0 8 |i Printed edition:  |z 9783319175225 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2140 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-17521-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)