Cargando…

Integral Transform Techniques for Green's Function

This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green's functions for beams, pl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Watanabe, Kazumi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:2nd ed. 2015.
Colección:Lecture Notes in Applied and Computational Mechanics, 76
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-17455-6
003 DE-He213
005 20230810184412.0
007 cr nn 008mamaa
008 150417s2015 sz | s |||| 0|eng d
020 |a 9783319174556  |9 978-3-319-17455-6 
024 7 |a 10.1007/978-3-319-17455-6  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
100 1 |a Watanabe, Kazumi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Integral Transform Techniques for Green's Function  |h [electronic resource] /  |c by Kazumi Watanabe. 
250 |a 2nd ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 264 p. 53 illus., 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied and Computational Mechanics,  |x 1860-0816 ;  |v 76 
505 0 |a Definition of integral transforms and distributions -- Green's functions for Laplace and wave equations -- Green's dyadic for an isotropic elastic solid -- Acoustic wave in an uniform flow -- Green's functions for beam and plate -- Cagniard de Hoop technique -- Miscellaneous Green's functions -- Exercises. 
520 |a This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green's functions for beams, plates and acoustic media are also shown, along with their mathematical derivations. The Cagniard-de Hoop method for double inversion is described in detail, and 2D and 3D elastodynamic problems are treated in full. This new edition explains in detail how to introduce the branch cut for the multi-valued square root function. Further, an exact closed form Green's function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering  |x Data processing. 
650 0 |a Mechanics, Applied. 
650 0 |a Mathematical analysis. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Engineering Mechanics. 
650 2 4 |a Integral Transforms and Operational Calculus. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319174563 
776 0 8 |i Printed edition:  |z 9783319174549 
776 0 8 |i Printed edition:  |z 9783319345871 
830 0 |a Lecture Notes in Applied and Computational Mechanics,  |x 1860-0816 ;  |v 76 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-17455-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)