Cargando…

Machine Learning in Complex Networks

This book explores the features and advantages offered by complex networks in the domain of machine learning. In the first part of the book, we present an overview on complex networks and machine learning. Then, we provide a comprehensive description on network-based machine learning. In addition, w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Christiano Silva, Thiago (Autor), Zhao, Liang (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-17290-3
003 DE-He213
005 20220116142846.0
007 cr nn 008mamaa
008 160128s2016 sz | s |||| 0|eng d
020 |a 9783319172903  |9 978-3-319-17290-3 
024 7 |a 10.1007/978-3-319-17290-3  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Christiano Silva, Thiago.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Machine Learning in Complex Networks  |h [electronic resource] /  |c by Thiago Christiano Silva, Liang Zhao. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVIII, 331 p. 87 illus., 80 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Complex Networks -- Machine Learning -- Network Construction Techniques -- Network-Based Supervised Learning -- Network-Based Unsupervised Learning -- Network-Based Semi-Supervised Learning -- Case Study of Network-Based Supervised Learning: High-Level Data Classification -- Case Study of Network-Based Unsupervised Learning: Stochastic Competitive Learning in Networks -- Case Study of Network-Based Semi-Supervised Learning: Stochastic Competitive-Cooperative Learning in Networks. 
520 |a This book explores the features and advantages offered by complex networks in the domain of machine learning. In the first part of the book, we present an overview on complex networks and machine learning. Then, we provide a comprehensive description on network-based machine learning. In addition, we also address the important network construction issue. In the second part of the book, we describe some techniques for supervised, unsupervised, and semi-supervised learning that rely on complex networks to perform the learning process. Particularly, we thoroughly investigate a particle competition technique for both unsupervised and semi-supervised learning that is modeled using a stochastic nonlinear dynamical system. Moreover, we supply an analytical analysis of the model, which enables one to predict the behavior of the proposed technique. In addition, we deal with data reliability issues or imperfect data in semi-supervised learning. Even though with relevant practical importance, little research is found about this topic in the literature. In order to validate these techniques, we employ broadly accepted real-world and artificial data sets. Regarding network-based supervised learning, we present a hybrid data classification technique that combines both low and high orders of learning. The low-level term can be implemented by any traditional classification technique, while the high-level term is realized by the extraction of topological features of the underlying network constructed from the input data. Thus, the former classifies test instances according to their physical features, while the latter measures the compliance of test instances with the pattern formation of the data. We show that the high-level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn may generate broad interests to scientific community, mainly to computer science and engineering areas. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a Graph theory. 
650 0 |a Social sciences. 
650 0 |a Humanities. 
650 0 |a Data mining. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Graph Theory. 
650 2 4 |a Humanities and Social Sciences. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Automated Pattern Recognition. 
700 1 |a Zhao, Liang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319172897 
776 0 8 |i Printed edition:  |z 9783319172910 
776 0 8 |i Printed edition:  |z 9783319792347 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-17290-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)