Cargando…

Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications

The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Möller, Manfred (Autor), Pivovarchik, Vyacheslav (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Edición:1st ed. 2015.
Colección:Operator Theory: Advances and Applications, 246
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-17070-1
003 DE-He213
005 20220110193805.0
007 cr nn 008mamaa
008 150611s2015 sz | s |||| 0|eng d
020 |a 9783319170701  |9 978-3-319-17070-1 
024 7 |a 10.1007/978-3-319-17070-1  |2 doi 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.724  |2 23 
100 1 |a Möller, Manfred.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications  |h [electronic resource] /  |c by Manfred Möller, Vyacheslav Pivovarchik. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XVII, 412 p. 11 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications,  |x 2296-4878 ;  |v 246 
505 0 |a Preface -- Part I: Operator Pencils -- 1.Quadratic Operator Pencils -- 2.Applications of Quadratic Operator Pencils -- 3.Operator Pencils with Essential Spectrum -- 4.Operator Pencils with a Gyroscopic Term -- Part II: Hermite-Biehler Functions -- 5.Generalized Hermite-Biehler Functions -- 6.Applications of Shifted Hermite-Biehler Functions -- Part III: Direct and Inverse Problems -- 7.Eigenvalue Asymptotics -- 8.Inverse Problems -- Part IV: Background Material -- 9.Spectral Dependence on a Parameter -- 10.Sobolev Spaces and Differential Operators -- 11.Analytic and Meromorphic Functions -- 12.Inverse Sturm-Liouville Problems -- Bibliography -- Index -- Index of Notation. 
520 |a The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail. Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader's background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed. 
650 0 |a Operator theory. 
650 0 |a Differential equations. 
650 0 |a Mathematical physics. 
650 1 4 |a Operator Theory. 
650 2 4 |a Differential Equations. 
650 2 4 |a Mathematical Physics. 
700 1 |a Pivovarchik, Vyacheslav.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319170718 
776 0 8 |i Printed edition:  |z 9783319170695 
776 0 8 |i Printed edition:  |z 9783319375670 
830 0 |a Operator Theory: Advances and Applications,  |x 2296-4878 ;  |v 246 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-17070-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)