Cargando…

Operator Theoretic Aspects of Ergodic Theory

Stunning recent results by Host-Kra, Green-Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Eisner, Tanja (Autor), Farkas, Bálint (Autor), Haase, Markus (Autor), Nagel, Rainer (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Graduate Texts in Mathematics, 272
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-16898-2
003 DE-He213
005 20230216041804.0
007 cr nn 008mamaa
008 151118s2015 sz | s |||| 0|eng d
020 |a 9783319168982  |9 978-3-319-16898-2 
024 7 |a 10.1007/978-3-319-16898-2  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Eisner, Tanja.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Operator Theoretic Aspects of Ergodic Theory  |h [electronic resource] /  |c by Tanja Eisner, Bálint Farkas, Markus Haase, Rainer Nagel. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVIII, 628 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 272 
505 0 |a What is Ergodic Theory? -- Topological Dynamical Systems -- Minimality and Recurrence -- The C*-algebra C(K) and the Koopman Operator -- Measure-Preserving Systems -- Recurrence and Ergodicity -- The Banach Lattice Lp and the Koopman Operator -- The Mean Ergodic Theorem -- Mixing Dynamical Systems -- Mean Ergodic Operators on C(K) -- The Pointwise Ergodic Theorem -- Isomorphisms and Topological Models -- Markov Operators -- Compact Semigroups and Groups -- Topological Dynamics Revisited -- The Jacobs-de Leeuw-Glicksberg Decomposition -- Dynamical Systems with Discrete Spectrum -- A Glimpse at Arithmetic Progressions -- Joinings -- The Host-Kra- Tao Theorem -- More Ergodic Theorems -- Appendix A: Topology -- Appendix B: Measure and Integration Theory -- Appendix C: Functional Analysis -- Appendix D: The Riesz Representation Theorem -- Appendix E: Theorems of Eberlein, Grothendieck, and Ellis. 
520 |a Stunning recent results by Host-Kra, Green-Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: •an intuitive introduction to ergodic theory •an introduction to the basic notions, constructions, and standard examples of topological dynamical systems •Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand-Naimark theorem •measure-preserving dynamical systems •von Neumann's Mean Ergodic Theorem and Birkhoff's Pointwise Ergodic Theorem •strongly and weakly mixing systems •an examination of notions of isomorphism for measure-preserving systems •Markov operators, and the related concept of a factor of a measure-preserving system •compact groups and semigroups, and a powerful tool in their study, the Jacobs-de Leeuw-Glicksberg decomposition •an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai, and Hindman, Furstenberg's Correspondence Principle, theorems of Roth and Furstenberg-Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory. 
650 0 |a Dynamical systems. 
650 0 |a Operator theory. 
650 0 |a Functional analysis. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
700 1 |a Farkas, Bálint.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Haase, Markus.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Nagel, Rainer.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319168975 
776 0 8 |i Printed edition:  |z 9783319168999 
776 0 8 |i Printed edition:  |z 9783319371054 
830 0 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 272 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-16898-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)