Cargando…

The Functional Analysis of Quantum Information Theory A Collection of Notes Based on Lectures by Gilles Pisier, K. R. Parthasarathy, Vern Paulsen and Andreas Winter /

This book provides readers with a concise introduction to current studies on operator-algebras and their generalizations, operator spaces and operator systems, with a special focus on their application in quantum information science. This basic framework for the mathematical formulation of quantum i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gupta, Ved Prakash (Autor), Mandayam, Prabha (Autor), Sunder, V.S (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Lecture Notes in Physics, 902
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-16718-3
003 DE-He213
005 20220114182134.0
007 cr nn 008mamaa
008 150528s2015 sz | s |||| 0|eng d
020 |a 9783319167183  |9 978-3-319-16718-3 
024 7 |a 10.1007/978-3-319-16718-3  |2 doi 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
072 7 |a PHQ  |2 thema 
082 0 4 |a 530.12  |2 23 
100 1 |a Gupta, Ved Prakash.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Functional Analysis of Quantum Information Theory  |h [electronic resource] :  |b A Collection of Notes Based on Lectures by Gilles Pisier, K. R. Parthasarathy, Vern Paulsen and Andreas Winter /  |c by Ved Prakash Gupta, Prabha Mandayam, V.S. Sunder. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 139 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 902 
505 0 |a Preface -- Operator Spaces -- Entanglement in Bipartite Quantum States -- Operator Systems -- Quantum Information Theory -- Index -- Bibliography. 
520 |a This book provides readers with a concise introduction to current studies on operator-algebras and their generalizations, operator spaces and operator systems, with a special focus on their application in quantum information science. This basic framework for the mathematical formulation of quantum information can be traced back to the mathematical work of John von Neumann, one of the pioneers of operator algebras, which forms the underpinning of most current mathematical treatments of the quantum theory, besides being one of the most dynamic areas of twentieth century functional analysis. Today, von Neumann's foresight finds expression in the rapidly growing field of quantum information theory. These notes gather the content of lectures given by a very distinguished group of mathematicians and quantum information theorists, held at the IMSc in Chennai some years ago, and great care has been taken to present the material as a primer on the subject matter. Starting from the basic definitions of operator spaces and operator systems, this text proceeds to discuss several important theorems including Stinespring's dilation theorem for completely positive maps and Kirchberg's theorem on tensor products of C*-algebras. It also takes a closer look at the abstract characterization of operator systems and, motivated by the requirements of different tensor products in quantum information theory, the theory of tensor products in operator systems is discussed in detail. On the quantum information side, the book offers a rigorous treatment of quantifying entanglement in bipartite quantum systems, and moves on to review four different areas in which ideas from the theory of operator systems and operator algebras play a natural role: the issue of zero-error communication over quantum channels, the strong subadditivity property of quantum entropy, the different norms on quantum states and the corresponding induced norms on quantum channels, and, lastly, the applications of matrix-valued random variables in the quantum information setting. 
650 0 |a Quantum physics. 
650 0 |a Quantum computers. 
650 0 |a Mathematical physics. 
650 0 |a Functional analysis. 
650 1 4 |a Quantum Physics. 
650 2 4 |a Quantum Computing. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Mathematical Physics. 
700 1 |a Mandayam, Prabha.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Sunder, V.S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319167190 
776 0 8 |i Printed edition:  |z 9783319167176 
830 0 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 902 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-16718-3  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)