Cargando…

Computational Intelligence for Big Data Analysis Frontier Advances and Applications /

The work presented in this book is a combination of theoretical advancements of big data analysis, cloud computing, and their potential applications in scientific computing. The theoretical advancements are supported with illustrative examples and its applications in handling real life problems. The...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Acharjya, D.P (Editor ), Dehuri, Satchidananda (Editor ), Sanyal, Sugata (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Adaptation, Learning, and Optimization, 19
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-16598-1
003 DE-He213
005 20220115013313.0
007 cr nn 008mamaa
008 150421s2015 sz | s |||| 0|eng d
020 |a 9783319165981  |9 978-3-319-16598-1 
024 7 |a 10.1007/978-3-319-16598-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Computational Intelligence for Big Data Analysis  |h [electronic resource] :  |b Frontier Advances and Applications /  |c edited by D.P. Acharjya, Satchidananda Dehuri, Sugata Sanyal. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XX, 267 p. 83 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Adaptation, Learning, and Optimization,  |x 1867-4542 ;  |v 19 
505 0 |a "Atrain Distributed System" (ADS) : An Infinitely Scalable Architecture for Processing Big Data of any 4Vs -- "Atrain Distributed System" (ADS) : An Infinitely Scalable Architecture for Processing Big Data of any 4Vs -- Learning Using Hybrid Intelligence Techniques -- Neutrosophic Sets and its Applications to Decision Making -- An Efficient Grouping Genetic Algorithm for Data Clustering and Big Data Analysis -- Self Organizing Migrating Algorithm with Nelder Mead Crossover and Log-Logisti Mutation for Large Scale Optimization -- A Spectrum of Big Data Applications for Data Analytics -- Fundamentals of Brain Signals and its Medical Application Using Data Analysis Techniques -- BigData: Processing of Data Intensive Applications on Cloud -- Framework for Supporting Heterogenous Clouds using Model Driven Approach -- Cloud based Big Data Analytics:WAN Optimization Techniques and Solutions -- Cloud Based E-Governance Solution: A Case Study. 
520 |a The work presented in this book is a combination of theoretical advancements of big data analysis, cloud computing, and their potential applications in scientific computing. The theoretical advancements are supported with illustrative examples and its applications in handling real life problems. The applications are mostly undertaken from real life situations. The book discusses major issues pertaining to big data analysis using computational intelligence techniques and some issues of cloud computing. An elaborate bibliography is provided at the end of each chapter. The material in this book includes concepts, figures, graphs, and tables to guide researchers in the area of big data analysis and cloud computing. 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Acharjya, D.P.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Dehuri, Satchidananda.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sanyal, Sugata.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319165998 
776 0 8 |i Printed edition:  |z 9783319165974 
776 0 8 |i Printed edition:  |z 9783319362007 
830 0 |a Adaptation, Learning, and Optimization,  |x 1867-4542 ;  |v 19 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-16598-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)