Cargando…

Branching Process Models of Cancer

This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the authors calculate the probability that mutations that confer resistance to treatment are present at det...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Durrett, Richard (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Stochastics in Biological Systems, 1.1
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-16065-8
003 DE-He213
005 20220116170810.0
007 cr nn 008mamaa
008 150620s2015 sz | s |||| 0|eng d
020 |a 9783319160658  |9 978-3-319-16065-8 
024 7 |a 10.1007/978-3-319-16065-8  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Durrett, Richard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Branching Process Models of Cancer  |h [electronic resource] /  |c by Richard Durrett. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VII, 63 p. 6 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Stochastics in Biological Systems,  |x 2364-2300 ;  |v 1.1 
505 0 |a Multistage Theory of Cancer -- Mathematical Overview -- Branching Process Results -- Time for Z_0 to Reach Size M -- Time Until the First Type 1 -- Mutation Before Detection? -- Accumulation of Neutral Mutations -- Properties of the Gamma Function -- Growth of Z_1(t) -- Movements of Z_1(t) -- Luria-Delbruck Distributions -- Number of Type 1's at Time T_M -- Gwoth of Z_k(t) -- Transitions Between Waves -- Time to the First Type \tau_k, k \ge 2 -- Application: Metastasis -- Application: Ovarian Cancer -- Application: Intratumor Heterogeneity. 
520 |a This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the authors calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the authors evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time. Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer. 
650 0 |a Probabilities. 
650 0 |a Biomathematics. 
650 0 |a Cancer. 
650 1 4 |a Probability Theory. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Cancer Biology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319160665 
776 0 8 |i Printed edition:  |z 9783319160641 
830 0 |a Stochastics in Biological Systems,  |x 2364-2300 ;  |v 1.1 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-16065-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)