Cargando…

Compressed Sensing and its Applications MATHEON Workshop 2013 /

Since publication of the initial papers in 2006, compressed sensing has captured the imagination of the international signal processing community, and the mathematical foundations are nowadays quite well understood. Parallel to the progress in mathematics, the potential applications of compressed se...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Boche, Holger (Editor ), Calderbank, Robert (Editor ), Kutyniok, Gitta (Editor ), Vybíral, Jan (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Edición:1st ed. 2015.
Colección:Applied and Numerical Harmonic Analysis,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-16042-9
003 DE-He213
005 20220115235358.0
007 cr nn 008mamaa
008 150704s2015 sz | s |||| 0|eng d
020 |a 9783319160429  |9 978-3-319-16042-9 
024 7 |a 10.1007/978-3-319-16042-9  |2 doi 
050 4 |a QA76.9.M35 
072 7 |a UYA  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
245 1 0 |a Compressed Sensing and its Applications  |h [electronic resource] :  |b MATHEON Workshop 2013 /  |c edited by Holger Boche, Robert Calderbank, Gitta Kutyniok, Jan Vybíral. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XII, 472 p. 105 illus., 70 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
505 0 |a Survey on Compressed Sensing -- Temporal compressive sensing for video -- Compressed Sensing, Sparse Inversion, and Model Mismatch -- Recovering Structured Signals in Noise: Least-Squares Meets Compressed Sensing -- The Quest for Optimal Sampling: Computationally Efficient, Structure-exploiting Measurements for Compressed Sensing -- Compressive Sensing in Acoustic Imaging -- Quantization and Compressive Sensing -- Compressive Gaussian Mixture Estimation -- Two Algorithms for Compressed Sensing of Sparse Tensors -- Sparse Model Uncertainties in Compressed Sensing with Application to Convolutions and Sporadic Communication -- Cosparsity in Compressed Sensing -- Structured Sparsity: Discrete and Convex Approaches -- Explicit Matrices with the Restricted Isometry Property: Breaking the Square-Root Bottleneck -- Tensor Completion in Hierarchical Tensor Representations -- Compressive Classification: Where Wireless Communications Meets Machine Learning. 
520 |a Since publication of the initial papers in 2006, compressed sensing has captured the imagination of the international signal processing community, and the mathematical foundations are nowadays quite well understood. Parallel to the progress in mathematics, the potential applications of compressed sensing have been explored by many international groups of, in particular, engineers and applied mathematicians, achieving very promising advances in various areas such as communication theory, imaging sciences, optics, radar technology, sensor networks, or tomography. Since many applications have reached a mature state, the research center MATHEON in Berlin focusing on "Mathematics for Key Technologies", invited leading researchers on applications of compressed sensing from mathematics, computer science, and engineering to the "MATHEON Workshop 2013: Compressed Sensing and its Applications" in December 2013. It was the first workshop specifically focusing on the applications of compressed sensing. This book features contributions by the plenary and invited speakers of this workshop. To make this book accessible for those unfamiliar with compressed sensing, the book will not only contain chapters on various applications of compressed sensing written by plenary and invited speakers, but will also provide a general introduction into compressed sensing. The book is aimed at both graduate students and researchers in the areas of applied mathematics, computer science, and engineering as well as other applied scientists interested in the potential and applications of the novel methodology of compressed sensing.  For those readers who are not already familiar with compressed sensing, an introduction to the basics of this theory will be included. 
650 0 |a Computer science-Mathematics. 
650 0 |a Signal processing. 
650 0 |a Coding theory. 
650 0 |a Information theory. 
650 0 |a Numerical analysis. 
650 0 |a Algebras, Linear. 
650 0 |a Mathematics-Data processing. 
650 1 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Coding and Information Theory. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Linear Algebra. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Boche, Holger.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Calderbank, Robert.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kutyniok, Gitta.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Vybíral, Jan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319160436 
776 0 8 |i Printed edition:  |z 9783319160412 
776 0 8 |i Printed edition:  |z 9783319347622 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-16042-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)