Cargando…

Real time deforestation detection using ANN and Satellite images The Amazon Rainforest study case /

The foremost aim of the present study was the development of a tool to detect daily deforestation in the Amazon rainforest, using satellite images from the MODIS/TERRA sensor and Artificial Neural Networks. The developed tool provides parameterization of the configuration for the neural network trai...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Nunes Kehl, Thiago (Autor), Todt, Viviane (Autor), Roberto Veronez, Maurício (Autor), Cesar Cazella, Silvio (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-15741-2
003 DE-He213
005 20220115205639.0
007 cr nn 008mamaa
008 150425s2015 sz | s |||| 0|eng d
020 |a 9783319157412  |9 978-3-319-15741-2 
024 7 |a 10.1007/978-3-319-15741-2  |2 doi 
050 4 |a G70.212-.217 
072 7 |a RGW  |2 bicssc 
072 7 |a TEC036000  |2 bisacsh 
072 7 |a RGW  |2 thema 
082 0 4 |a 910.285  |2 23 
100 1 |a Nunes Kehl, Thiago.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Real time deforestation detection using ANN and Satellite images  |h [electronic resource] :  |b The Amazon Rainforest study case /  |c by Thiago Nunes Kehl, Viviane Todt, Maurício Roberto Veronez, Silvio Cesar Cazella. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 67 p. 25 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a 1 Introduction -- 2 Literature Review -- 3 Method -- 4 Results and Discussion -- 5 Conclusions and Future Work. 
520 |a The foremost aim of the present study was the development of a tool to detect daily deforestation in the Amazon rainforest, using satellite images from the MODIS/TERRA sensor and Artificial Neural Networks. The developed tool provides parameterization of the configuration for the neural network training to enable us to select the best neural architecture to address the problem. The tool makes use of confusion matrices to determine the degree of success of the network. A spectrum-temporal analysis of the study area was done on 57 images from May 20 to July 15, 2003 using the trained neural network. The analysis enabled verification of quality of the implemented neural network classification and also aided in understanding the dynamics of deforestation in the Amazon rainforest, thereby highlighting the vast potential of neural networks for image classification. However, the complex task of detection of predatory actions at the beginning, i.e., generation of consistent alarms, instead of false alarms has not been solved yet. Thus, the present article provides a theoretical basis and elaboration of practical use of neural networks and satellite images to combat illegal deforestation. 
650 0 |a Geographic information systems. 
650 0 |a Artificial intelligence. 
650 1 4 |a Geographical Information System. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Todt, Viviane.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Roberto Veronez, Maurício.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Cesar Cazella, Silvio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319157429 
776 0 8 |i Printed edition:  |z 9783319157405 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-15741-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)