Learning with Partially Labeled and Interdependent Data
This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data. The book traces how the...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Amini, Massih-Reza (Autor), Usunier, Nicolas (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Edición: | 1st ed. 2015. |
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Encyclopedia of Machine Learning
Publicado: (2010) -
Data Analysis, Machine Learning and Applications Proceedings of the 31st Annual Conference of the Gesellschaft für Klassifikation e.V., Albert-Ludwigs-Universität Freiburg, March 7-9, 2007 /
Publicado: (2008) -
Advances in Data Analysis, Data Handling and Business Intelligence Proceedings of the 32nd Annual Conference of the Gesellschaft für Klassifikation e.V., Joint Conference with the British Classification Society (BCS) and the Dutch/Flemish Classification Society (VOC), Helmut-Schmidt-University, Hamburg, July 16-18, 2008 /
Publicado: (2010) -
The Elements of Statistical Learning Data Mining, Inference, and Prediction, Second Edition /
por: Hastie, Trevor, et al.
Publicado: (2009) -
Boosted Statistical Relational Learners From Benchmarks to Data-Driven Medicine /
por: Natarajan, Sriraam, et al.
Publicado: (2014)