Cargando…

Learning with Partially Labeled and Interdependent Data

This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data. The book traces how the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Amini, Massih-Reza (Autor), Usunier, Nicolas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-15726-9
003 DE-He213
005 20220112104406.0
007 cr nn 008mamaa
008 150507s2015 sz | s |||| 0|eng d
020 |a 9783319157269  |9 978-3-319-15726-9 
024 7 |a 10.1007/978-3-319-15726-9  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Amini, Massih-Reza.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Learning with Partially Labeled and Interdependent Data  |h [electronic resource] /  |c by Massih-Reza Amini, Nicolas Usunier. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 106 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Introduction to learning theory -- Semi-supervised learning -- Learning with interdependent data. 
520 |a This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data. The book traces how the semi-supervised paradigm and the learning to rank paradigm emerged from new web applications, leading to a massive production of heterogeneous textual data. It explains how semi-supervised learning techniques are widely used, but only allow a limited analysis of the information content and thus do not meet the demands of many web-related tasks. Later chapters deal with the development of learning methods for ranking entities in a large collection with respect to precise information needed. In some cases, learning a ranking function can be reduced to learning a classification function over the pairs of examples. The book proves that this task can be efficiently tackled in a new framework: learning with interdependent data. Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is also useful for advanced-level students of computer science, particularly those focused on statistics and learning. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 0 |a Statistics . 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Usunier, Nicolas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319157252 
776 0 8 |i Printed edition:  |z 9783319157276 
776 0 8 |i Printed edition:  |z 9783319353906 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-15726-9  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)