Cargando…

Mathematical Models for Suspension Bridges Nonlinear Structural Instability /

This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gazzola, Filippo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:MS&A, Modeling, Simulation and Applications, 15
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-15434-3
003 DE-He213
005 20220119054413.0
007 cr nn 008mamaa
008 150522s2015 sz | s |||| 0|eng d
020 |a 9783319154343  |9 978-3-319-15434-3 
024 7 |a 10.1007/978-3-319-15434-3  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Gazzola, Filippo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Models for Suspension Bridges  |h [electronic resource] :  |b Nonlinear Structural Instability /  |c by Filippo Gazzola. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XXI, 259 p. 81 illus., 48 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a MS&A, Modeling, Simulation and Applications,  |x 2037-5263 ;  |v 15 
505 0 |a 1 Book overview -- 2 Brief history of suspension bridges -- 3 One dimensional models -- 4 A fish-bone beam model -- 5 Models with interacting oscillators -- 6 Plate models -- 7 Conclusions. 
520 |a This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability. 
650 0 |a Differential equations. 
650 0 |a Mathematical models. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Differential Equations. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Solid Mechanics. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319154350 
776 0 8 |i Printed edition:  |z 9783319154336 
776 0 8 |i Printed edition:  |z 9783319368573 
830 0 |a MS&A, Modeling, Simulation and Applications,  |x 2037-5263 ;  |v 15 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-15434-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)