Cargando…

Protein Homology Detection Through Alignment of Markov Random Fields Using MRFalign /

This work covers sequence-based protein homology detection, a fundamental and challenging bioinformatics problem with a variety of real-world applications. The text first surveys a few popular homology detection methods, such as Position-Specific Scoring Matrix (PSSM) and Hidden Markov Model (HMM) b...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Xu, Jinbo (Autor), Wang, Sheng (Autor), Ma, Jianzhu (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-14914-1
003 DE-He213
005 20220118230431.0
007 cr nn 008mamaa
008 150122s2015 sz | s |||| 0|eng d
020 |a 9783319149141  |9 978-3-319-14914-1 
024 7 |a 10.1007/978-3-319-14914-1  |2 doi 
050 4 |a QH324.2-324.25 
072 7 |a PS  |2 bicssc 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a PSAX  |2 thema 
082 0 4 |a 570.285  |2 23 
082 0 4 |a 570.113  |2 23 
100 1 |a Xu, Jinbo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Protein Homology Detection Through Alignment of Markov Random Fields  |h [electronic resource] :  |b Using MRFalign /  |c by Jinbo Xu, Sheng Wang, Jianzhu Ma. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VIII, 51 p. 13 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Introduction -- Method -- Software -- Experiments and Results -- Conclusion. 
520 |a This work covers sequence-based protein homology detection, a fundamental and challenging bioinformatics problem with a variety of real-world applications. The text first surveys a few popular homology detection methods, such as Position-Specific Scoring Matrix (PSSM) and Hidden Markov Model (HMM) based methods, and then describes a novel Markov Random Fields (MRF) based method developed by the authors. MRF-based methods are much more sensitive than HMM- and PSSM-based methods for remote homolog detection and fold recognition, as MRFs can model long-range residue-residue interaction. The text also describes the installation, usage and result interpretation of programs implementing the MRF-based method. 
650 0 |a Bioinformatics. 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Biometry. 
650 1 4 |a Computational and Systems Biology. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Biostatistics. 
700 1 |a Wang, Sheng.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Ma, Jianzhu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319149134 
776 0 8 |i Printed edition:  |z 9783319149158 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-14914-1  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)