Cargando…

Problems and Proofs in Numbers and Algebra

Designed to facilitate the transition from undergraduate calculus and differential equations to learning about proofs, this book helps students develop the rigorous mathematical reasoning needed for advanced courses in analysis, abstract algebra, and more. Students will focus on both how to prove th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Millman, Richard S. (Autor), Shiue, Peter J. (Autor), Kahn, Eric Brendan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-14427-6
003 DE-He213
005 20220120090219.0
007 cr nn 008mamaa
008 150209s2015 sz | s |||| 0|eng d
020 |a 9783319144276  |9 978-3-319-14427-6 
024 7 |a 10.1007/978-3-319-14427-6  |2 doi 
050 4 |a QA251 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Millman, Richard S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Problems and Proofs in Numbers and Algebra  |h [electronic resource] /  |c by Richard S. Millman, Peter J. Shiue, Eric Brendan Kahn. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 223 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Designed to facilitate the transition from undergraduate calculus and differential equations to learning about proofs, this book helps students develop the rigorous mathematical reasoning needed for advanced courses in analysis, abstract algebra, and more. Students will focus on both how to prove theorems and solve problem sets in-depth; that is, where multiple steps are needed to prove or solve. This proof technique is developed by examining two specific content themes and their applications in-depth: number theory and algebra. This choice of content themes enables students to develop an understanding of proof technique in the context of topics with which they are already familiar, as well as reinforcing natural and conceptual understandings of mathematical methods and styles. The key to the text is its interesting and intriguing problems, exercises, theorems, and proofs, showing how students will transition from the usual, more routine calculus to abstraction while also learning how to "prove" or "solve" complex problems. This method of instruction is augmented by examining applications of number theory in systems such as RSA cryptography, Universal Product Code (UPC), and International Standard Book Number (ISBN). The numerous problems and examples included in each section reward curiosity and insightfulness over more simplistic approaches. Each problem set begins with a few easy problems, progressing to problems or proofs with multi-step solutions. Exercises in the text stay close to the examples of the section, allowing students the immediate opportunity to practice developing techniques.  Beyond the undergraduate mathematics student audience, the text can also offer a rigorous treatment of mathematics content (numbers and algebra) for high achieving high school students. Furthermore, prospective teachers will add to the breadth of the audience as math education majors, will understand more thoroughly methods of proof, and will add to the depth of their mathematical knowledge. 
650 0 |a Universal algebra. 
650 0 |a Number theory. 
650 0 |a Mathematical logic. 
650 1 4 |a General Algebraic Systems. 
650 2 4 |a Number Theory. 
650 2 4 |a Mathematical Logic and Foundations. 
700 1 |a Shiue, Peter J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kahn, Eric Brendan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319144269 
776 0 8 |i Printed edition:  |z 9783319144283 
776 0 8 |i Printed edition:  |z 9783319357232 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-14427-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)