Cargando…

Birational Geometry of Foliations

The text presents the birational classification of holomorphic foliations of surfaces.  It discusses at length the theory developed by L.G. Mendes, M. McQuillan and the author to study foliations of surfaces  in the spirit of the classification of complex algebraic surfaces.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Brunella, Marco (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:IMPA Monographs ; 1
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-14310-1
003 DE-He213
005 20220116093948.0
007 cr nn 008mamaa
008 150325s2015 sz | s |||| 0|eng d
020 |a 9783319143101  |9 978-3-319-14310-1 
024 7 |a 10.1007/978-3-319-14310-1  |2 doi 
050 4 |a QA685 
072 7 |a PBML  |2 bicssc 
072 7 |a MAT012040  |2 bisacsh 
072 7 |a PBML  |2 thema 
082 0 4 |a 516.9  |2 23 
100 1 |a Brunella, Marco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Birational Geometry of Foliations  |h [electronic resource] /  |c by Marco Brunella. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 130 p. 35 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a IMPA Monographs ;  |v 1 
505 0 |a Introduction: From Surfaces to Foliations -- Local Theory -- Foliations and Line Bundles -- Index Theorems -- Some Special Foliations -- Minimal Models -- Global 1-forms and Vector Fields -- The Rationality Criterion -- Numerical Kodaira Dimension -- Kodaira Dimension -- References. 
520 |a The text presents the birational classification of holomorphic foliations of surfaces.  It discusses at length the theory developed by L.G. Mendes, M. McQuillan and the author to study foliations of surfaces  in the spirit of the classification of complex algebraic surfaces. 
650 0 |a Geometry, Hyperbolic. 
650 0 |a Number theory. 
650 0 |a Geometry. 
650 1 4 |a Hyperbolic Geometry. 
650 2 4 |a Number Theory. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319143118 
776 0 8 |i Printed edition:  |z 9783319143095 
776 0 8 |i Printed edition:  |z 9783319365657 
830 0 |a IMPA Monographs ;  |v 1 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-14310-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)