Cargando…

Proceedings of ELM-2014 Volume 1 Algorithms and Theories /

This book contains some selected papers from the International Conference on Extreme Learning Machine 2014, which was held in Singapore, December 8-10, 2014. This conference brought together the researchers and practitioners of Extreme Learning Machine (ELM) from a variety of fields to promote resea...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Cao, Jiuwen (Editor ), Mao, Kezhi (Editor ), Cambria, Erik (Editor ), Man, Zhihong (Editor ), Toh, Kar-Ann (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Proceedings in Adaptation, Learning and Optimization, 3
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-14063-6
003 DE-He213
005 20220114143732.0
007 cr nn 008mamaa
008 141204s2015 sz | s |||| 0|eng d
020 |a 9783319140636  |9 978-3-319-14063-6 
024 7 |a 10.1007/978-3-319-14063-6  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Proceedings of ELM-2014 Volume 1  |h [electronic resource] :  |b Algorithms and Theories /  |c edited by Jiuwen Cao, Kezhi Mao, Erik Cambria, Zhihong Man, Kar-Ann Toh. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VIII, 446 p. 124 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Proceedings in Adaptation, Learning and Optimization,  |x 2363-6092 ;  |v 3 
505 0 |a Sparse Bayesian ELM handling with missing data for multi-class classification -- A Fast Incremental Method Based on Regularized Extreme Learning Machine -- Parallel Ensemble of Online Sequential Extreme Learning Machine Based on MapReduce -- Explicit Computation of Input Weights in Extreme Learning Machines -- Subspace Detection on Concept Drifting Data Stream -- Inductive Bias for Semi-supervised Extreme Learning Machine -- ELM based Efficient Probabilistic Threshold Query on Uncertain Data -- Sample-based Extreme Learning Machine Regression with Absent Data -- Two Stages Query Processing Optimization based on ELM in the Cloud -- Domain Adaption Transfer Extreme Learning Machine -- Quasi-linear extreme learning machine model based nonlinear system identification -- A novel bio-inspired image recognition network with extreme learning machine -- A Deep and Stable Extreme Learning Approach for Classification and Regression -- Extreme Learning Machine Ensemble Classifier for Large-scale Data -- Pruned Extreme Learning Machine Optimization based on RANSAC Multi Model Response Regularization -- Learning ELM network weights using linear discriminant analysis -- An Algorithm for Classification over Uncertain Data based on Extreme Learning Machine -- Training Generalized Feedforward Kernelized Neural Networks on Very Large Datasets for Regression Using Minimal-Enclosing-Ball Approximation -- An Online Multiple Model Approach to Improve Performance in Univariate Time-Series Prediction -- A Self-organizing Mixture Extreme Leaning Machine for Time Series Forecasting -- A Robust AdaBoost.RT based Ensemble Extreme Learning Machine -- Machine learning reveals different brain activities during TOVA test -- Online Sequential Extreme Learning Machine with New Weight-setting Strategy or Non stationary Time Series Prediction -- RMSE-ELM: Recursive Model based Selective Ensemble of Extreme Learning Machines for Robustness Improvement -- Extreme Learning Machine for Regression and Classification Using L1-Norm and L2-Norm -- A Semi-supervised Online Sequential Extreme Learning Machine Method -- ELM feature mappings learning: Single-hidden-layer feed forward network without output weight -- ROS-ELM: A Robust Online Sequential Extreme Learning Machine for Big Data -- Deep Extreme Learning Machines for Classification -- C-ELM: A Curious Extreme Learning Machine for Classification Problems -- Review of Advances in Neural Networks: Neural Design Technology Stack -- Applying Regularization Least Squares Canonical Correction Analysis in Extreme Learning Machine formulti-label classification problems -- Least Squares Policy Iteration based on Random Vector Basis -- Identifying Indistinguishable Classes in Multi-class Classification Data Sets using ELM -- Effects of Training Datasets on both the Extreme Learning Machine and Support Vector Machine for Target Audience Identification on Twitter -- Extreme Learning Machine for Clustering. 
520 |a This book contains some selected papers from the International Conference on Extreme Learning Machine 2014, which was held in Singapore, December 8-10, 2014. This conference brought together the researchers and practitioners of Extreme Learning Machine (ELM) from a variety of fields to promote research and development of "learning without iterative tuning".  The book covers theories, algorithms and applications of ELM. It gives the readers a glance of the most recent advances of ELM.  . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Cao, Jiuwen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Mao, Kezhi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Cambria, Erik.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Man, Zhihong.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Toh, Kar-Ann.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319140643 
776 0 8 |i Printed edition:  |z 9783319140629 
776 0 8 |i Printed edition:  |z 9783319366845 
830 0 |a Proceedings in Adaptation, Learning and Optimization,  |x 2363-6092 ;  |v 3 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-14063-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)