Cargando…

Fixed Point Theory in Modular Function Spaces

This monograph provides a concise introduction to the main results and methods of the fixed point theory in modular function spaces. Modular function spaces are natural generalizations of both function and sequence variants of many important spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Or...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Khamsi, Mohamed A. (Autor), Kozlowski, Wojciech M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-14051-3
003 DE-He213
005 20220120015941.0
007 cr nn 008mamaa
008 150324s2015 sz | s |||| 0|eng d
020 |a 9783319140513  |9 978-3-319-14051-3 
024 7 |a 10.1007/978-3-319-14051-3  |2 doi 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.724  |2 23 
100 1 |a Khamsi, Mohamed A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fixed Point Theory in Modular Function Spaces  |h [electronic resource] /  |c by Mohamed A. Khamsi, Wojciech M. Kozlowski. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a X, 245 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Fixed Point Theory in Metric Spaces: An Introduction -- Modular Function Spaces -- Geometry of Modular Function Spaces -- Fixed Point Existence Theorems in Modular Function Spaces -- Fixed Point Construction Processes -- Semigroups of Nonlinear Mappings in Modular Function Spaces -- Modular Metric Spaces. 
520 |a This monograph provides a concise introduction to the main results and methods of the fixed point theory in modular function spaces. Modular function spaces are natural generalizations of both function and sequence variants of many important spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, Calderon-Lozanovskii spaces, and others. In most cases, particularly in applications to integral operators, approximation and fixed point results, modular type conditions are much more natural and can be more easily verified than their metric or norm counterparts. There are also important results that can be proved only using the apparatus of modular function spaces. The material is presented in a systematic and rigorous manner that allows readers to grasp the key ideas and to gain a working knowledge of the theory. Despite the fact that the work is largely self-contained, extensive bibliographic references are included, and open problems and further development directions are suggested when applicable.   The monograph is targeted mainly at the mathematical research community but it is also accessible to graduate students interested in functional analysis and its applications. It could also serve as a text for an advanced course in fixed point theory of mappings acting in modular function spaces. 
650 0 |a Operator theory. 
650 0 |a Functional analysis. 
650 1 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
700 1 |a Kozlowski, Wojciech M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319140520 
776 0 8 |i Printed edition:  |z 9783319140506 
776 0 8 |i Printed edition:  |z 9783319346359 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-14051-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)