Cargando…

Optimal Interconnection Trees in the Plane Theory, Algorithms and Applications /

This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Brazil, Marcus (Autor), Zachariasen, Martin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Algorithms and Combinatorics, 29
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-13915-9
003 DE-He213
005 20220118104726.0
007 cr nn 008mamaa
008 150413s2015 sz | s |||| 0|eng d
020 |a 9783319139159  |9 978-3-319-13915-9 
024 7 |a 10.1007/978-3-319-13915-9  |2 doi 
050 4 |a QA297.4 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
072 7 |a PBD  |2 thema 
082 0 4 |a 511.1  |2 23 
100 1 |a Brazil, Marcus.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Optimal Interconnection Trees in the Plane  |h [electronic resource] :  |b Theory, Algorithms and Applications /  |c by Marcus Brazil, Martin Zachariasen. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVII, 344 p. 150 illus., 135 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algorithms and Combinatorics,  |x 2197-6783 ;  |v 29 
505 0 |a Preface:- 1 Euclidean and Minkowski Steiner Trees -- 2 Fixed Orientation Steiner Trees -- 3 Rectilinear Steiner Trees -- 4 Steiner Trees with Other Costs and Constraints -- 5 Steiner Trees in Graphs and Hypergraphs -- A Appendix. 
520 |a This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions.  Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees.  The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, engineers and computer scientists to understand the principles required for designing interconnection networks in the plane that are as cost efficient as possible. 
650 0 |a Discrete mathematics. 
650 0 |a Computer science-Mathematics. 
650 0 |a Geometry. 
650 0 |a Mathematical optimization. 
650 0 |a Algorithms. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Discrete Mathematics. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Geometry. 
650 2 4 |a Optimization. 
650 2 4 |a Algorithms. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
700 1 |a Zachariasen, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319139166 
776 0 8 |i Printed edition:  |z 9783319139142 
776 0 8 |i Printed edition:  |z 9783319354828 
830 0 |a Algorithms and Combinatorics,  |x 2197-6783 ;  |v 29 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-13915-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)