Cargando…

Convex Optimization in Normed Spaces Theory, Methods and Examples /

This work is intended to serve as a guide for graduate students and researchers who wish to get acquainted with the main theoretical and practical tools for the numerical minimization of convex functions on Hilbert spaces. Therefore, it contains the main tools that are necessary to conduct independe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Peypouquet, Juan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:SpringerBriefs in Optimization,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-13710-0
003 DE-He213
005 20220120002206.0
007 cr nn 008mamaa
008 150318s2015 sz | s |||| 0|eng d
020 |a 9783319137100  |9 978-3-319-13710-0 
024 7 |a 10.1007/978-3-319-13710-0  |2 doi 
050 4 |a QA402.5-402.6 
050 4 |a QA315-316 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
082 0 4 |a 515.64  |2 23 
100 1 |a Peypouquet, Juan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Convex Optimization in Normed Spaces  |h [electronic resource] :  |b Theory, Methods and Examples /  |c by Juan Peypouquet. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 124 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2191-575X ;  |v 0 
505 0 |a Basic Functional Analysis -- Existence of Minimizers -- Convex Analysis and Subdifferential Calculus -- Examples -- Problem-solving Strategies -- Keynote Iterative Methods. 
520 |a This work is intended to serve as a guide for graduate students and researchers who wish to get acquainted with the main theoretical and practical tools for the numerical minimization of convex functions on Hilbert spaces. Therefore, it contains the main tools that are necessary to conduct independent research on the topic. It is also a concise, easy-to-follow and self-contained textbook, which may be useful for any researcher working on related fields, as well as teachers giving graduate-level courses on the topic. It will contain a thorough revision of the extant literature including both classical and state-of-the-art references. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Algorithms. 
650 1 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Algorithms. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319137117 
776 0 8 |i Printed edition:  |z 9783319137094 
830 0 |a SpringerBriefs in Optimization,  |x 2191-575X ;  |v 0 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-13710-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)