Cargando…

Guide to High Performance Distributed Computing Case Studies with Hadoop, Scalding and Spark /

This timely text/reference describes the development and implementation of large-scale distributed processing systems using open source tools and technologies such as Hadoop, Scalding and Spark. Comprehensive in scope, the book presents state-of-the-art material on building high performance distribu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Srinivasa, K.G (Autor), Muppalla, Anil Kumar (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Computer Communications and Networks,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-13497-0
003 DE-He213
005 20220116034252.0
007 cr nn 008mamaa
008 150209s2015 sz | s |||| 0|eng d
020 |a 9783319134970  |9 978-3-319-13497-0 
024 7 |a 10.1007/978-3-319-13497-0  |2 doi 
050 4 |a TK5105.5-5105.9 
072 7 |a UKN  |2 bicssc 
072 7 |a COM075000  |2 bisacsh 
072 7 |a UKN  |2 thema 
082 0 4 |a 004.6  |2 23 
100 1 |a Srinivasa, K.G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Guide to High Performance Distributed Computing  |h [electronic resource] :  |b Case Studies with Hadoop, Scalding and Spark /  |c by K.G. Srinivasa, Anil Kumar Muppalla. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVII, 304 p. 43 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computer Communications and Networks,  |x 2197-8433 
505 0 |a Part I: Programming Fundamentals of High Performance Distributed Computing -- Introduction -- Getting Started with Hadoop -- Getting Started with Spark -- Programming Internals of Scalding and Spark -- Part II: Case studies using Hadoop, Scalding and Spark -- Case Study I: Data Clustering using Scalding and Spark -- Case Study II: Data Classification using Scalding and Spark -- Case Study III: Regression Analysis using Scalding and Spark -- Case Study IV: Recommender System using Scalding and Spark. 
520 |a This timely text/reference describes the development and implementation of large-scale distributed processing systems using open source tools and technologies such as Hadoop, Scalding and Spark. Comprehensive in scope, the book presents state-of-the-art material on building high performance distributed computing systems, providing practical guidance and best practices as well as describing theoretical software frameworks. Topics and features: Describes the fundamentals of building scalable software systems for large-scale data processing in the new paradigm of high performance distributed computing Presents an overview of the Hadoop ecosystem, followed by step-by-step instruction on its installation, programming and execution Reviews the basics of Spark, including resilient distributed datasets, and examines Hadoop streaming and working with Scalding Provides detailed case studies on approaches to clustering, data classification and regression analysis Explains the process of creating a working recommender system using Scalding and Spark Supplies a complete list of supplementary source code and datasets at an associated website Fulfilling the need for both introductory material for undergraduate students of computer science and detailed discussions for software engineering professionals, this book will aid a broad audience to understand the esoteric aspects of practical high performance computing through its use of solved problems, research case studies and working source code. K.G. Srinivasa is Professor and Head of the Department of Computer Science and Engineering at M.S. Ramaiah Institute of Technology (MSRIT), Bangalore, India. His other publications include the Springer title Soft Computing for Data Mining Applications. Anil Kumar Muppalla is also a researcher at MSRIT. 
650 0 |a Computer networks . 
650 0 |a Computer programming. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Computer vision. 
650 1 4 |a Computer Communication Networks. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computer Vision. 
700 1 |a Muppalla, Anil Kumar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319134987 
776 0 8 |i Printed edition:  |z 9783319134963 
776 0 8 |i Printed edition:  |z 9783319383477 
830 0 |a Computer Communications and Networks,  |x 2197-8433 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-13497-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)