Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields
The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi form...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Boylan, Hatice (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Edición: | 1st ed. 2015. |
Colección: | Lecture Notes in Mathematics,
2130 |
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Algebraic Theory of Quadratic Numbers
por: Trifković, Mak
Publicado: (2013) -
Arithmetic of Quadratic Forms
por: Shimura, Goro
Publicado: (2010) -
Quadratic and Higher Degree Forms
Publicado: (2013) -
Quadratic Diophantine Equations
por: Andreescu, Titu, et al.
Publicado: (2015) -
The Quadratic Reciprocity Law A Collection of Classical Proofs /
por: Baumgart, Oswald
Publicado: (2015)