Cargando…

Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields

The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi form...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Boylan, Hatice (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Lecture Notes in Mathematics, 2130
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-12916-7
003 DE-He213
005 20220114125454.0
007 cr nn 008mamaa
008 141205s2015 sz | s |||| 0|eng d
020 |a 9783319129167  |9 978-3-319-12916-7 
024 7 |a 10.1007/978-3-319-12916-7  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Boylan, Hatice.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields  |h [electronic resource] /  |c by Hatice Boylan. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIX, 130 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2130 
505 0 |a Introduction -- Notations -- Finite  Quadratic  Modules -- Weil Representations of Finite  Quadratic  Modules -- Jacobi Forms over Totally Real Number  Fields -- Singular Jacobi Forms -- Tables -- Glossary. 
520 |a The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field. 
650 0 |a Number theory. 
650 1 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319129174 
776 0 8 |i Printed edition:  |z 9783319129150 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2130 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-12916-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)