The Nonlinear Schrödinger Equation Singular Solutions and Optical Collapse /
This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrödinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the s...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Edición: | 1st ed. 2015. |
Colección: | Applied Mathematical Sciences,
192 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Derivation of the NLS
- Linear propagation
- Early self-focusing research
- NLS models
- Existence of NLS solutions
- Solitary waves
- Variance identity
- Symmetries and the lens transformation
- Stability of solitary waves
- The explicit critical singular peak-type solution
- The explicit critical singular ring-type solution
- The explicit supercritical singular peak-type solution
- Blowup rate, blowup profile, and power concentration
- The peak-type blowup profile
- Vortex solutions
- NLS on a bounded domain
- Derivation of reduced equations
- Loglog law and adiabatic collapse
- Singular H1 ring-type solutions
- Singular H1 vortex solutions
- Singular H1 peak-type solutions
- Singular standing-ring solutions
- Singular shrinking-ring solutions
- Critical and threshold powers for collapse
- Multiple filamentation
- Nonlinear Geometrical Optics (NGO) method
- Location of singularity
- Computation of solitary waves
- Numerical methods for the NLS
- Effects of spatial discretization
- Modulation theory
- Cubic-quintic and saturated nonlinearities
- Linear and nonlinear damping
- Nonparaxiality and backscattering (nonlinear Helmholtz equation)
- Ultrashort pulses
- Normal and anomalous dispersion
- NGO method for ultrashort pulses with anomalous dispersion
- Continuations beyond the singularity
- Loss of phase and chaotic interactions.