Cargando…

The Nonlinear Schrödinger Equation Singular Solutions and Optical Collapse /

This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrödinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fibich, Gadi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Applied Mathematical Sciences, 192
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Derivation of the NLS
  • Linear propagation
  • Early self-focusing research
  • NLS models
  • Existence of NLS solutions
  • Solitary waves
  • Variance identity
  • Symmetries and the lens transformation
  • Stability of solitary waves
  • The explicit critical singular peak-type solution
  • The explicit critical singular ring-type solution
  • The explicit supercritical singular peak-type solution
  • Blowup rate, blowup profile, and power concentration
  • The peak-type blowup profile
  • Vortex solutions
  • NLS on a bounded domain
  • Derivation of reduced equations
  • Loglog law and adiabatic collapse
  • Singular H1 ring-type solutions
  • Singular H1 vortex solutions
  • Singular H1 peak-type solutions
  • Singular standing-ring solutions
  • Singular shrinking-ring solutions
  • Critical and threshold powers for collapse
  • Multiple filamentation
  • Nonlinear Geometrical Optics (NGO) method
  • Location of singularity
  • Computation of solitary waves
  • Numerical methods for the NLS
  • Effects of spatial discretization
  • Modulation theory
  • Cubic-quintic and saturated nonlinearities
  • Linear and nonlinear damping
  • Nonparaxiality and backscattering (nonlinear Helmholtz equation)
  • Ultrashort pulses
  • Normal and anomalous dispersion
  • NGO method for ultrashort pulses with anomalous dispersion
  • Continuations beyond the singularity
  • Loss of phase and chaotic interactions.