Cargando…

Spatio-Temporal Data Analytics for Wind Energy Integration

This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yang, Lei (Autor), He, Miao (Autor), Zhang, Junshan (Autor), Vittal, Vijay (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:SpringerBriefs in Electrical and Computer Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-12319-6
003 DE-He213
005 20220119012128.0
007 cr nn 008mamaa
008 141114s2014 sz | s |||| 0|eng d
020 |a 9783319123196  |9 978-3-319-12319-6 
024 7 |a 10.1007/978-3-319-12319-6  |2 doi 
050 4 |a TJ807-830 
072 7 |a THX  |2 bicssc 
072 7 |a TEC031010  |2 bisacsh 
072 7 |a THV  |2 thema 
082 0 4 |a 621.042  |2 23 
100 1 |a Yang, Lei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spatio-Temporal Data Analytics for Wind Energy Integration  |h [electronic resource] /  |c by Lei Yang, Miao He, Junshan Zhang, Vijay Vittal. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 80 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8120 
505 0 |a Introduction -- A Spatio-Temporal Analysis Approach for Short-Term Forecast of Wind Farm Generation -- Support Vector Machine Enhanced Markov Model for Short-Term Wind Power Forecast -- Stochastic Optimization based Economic Dispatch and Interruptible Load Management -- Conclusions and Future Works. 
520 |a This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic dispatch (ED) and interruptible load management are investigated as well. Spatio-Temporal Data Analytics for Wind Energy Integration is valuable for researchers and professionals working towards renewable energy integration. Advanced-level students studying electrical, computer and energy engineering should also find the content useful. 
650 0 |a Renewable energy sources. 
650 0 |a Data mining. 
650 0 |a Energy policy. 
650 0 |a Energy and state. 
650 0 |a Electric power production. 
650 1 4 |a Renewable Energy. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Energy Policy, Economics and Management. 
650 2 4 |a Electrical Power Engineering. 
650 2 4 |a Mechanical Power Engineering. 
700 1 |a He, Miao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhang, Junshan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vittal, Vijay.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319123202 
776 0 8 |i Printed edition:  |z 9783319123189 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8120 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-12319-6  |z Texto Completo 
912 |a ZDB-2-ENE 
912 |a ZDB-2-SXEN 
950 |a Energy (SpringerNature-40367) 
950 |a Energy (R0) (SpringerNature-43717)