Cargando…

Design of Experiments for Reinforcement Learning

This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not com...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gatti, Christopher (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-12197-0
003 DE-He213
005 20220116024311.0
007 cr nn 008mamaa
008 141122s2015 sz | s |||| 0|eng d
020 |a 9783319121970  |9 978-3-319-12197-0 
024 7 |a 10.1007/978-3-319-12197-0  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Gatti, Christopher.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Design of Experiments for Reinforcement Learning  |h [electronic resource] /  |c by Christopher Gatti. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 191 p. 46 illus., 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
505 0 |a Introduction -- Reinforcement Learning. Design of Experiments -- Methodology -- The Mountain Car Problem -- The Truck Backer-Upper Problem -- The Tandem Truck Backer-Upper Problem -- Appendices. 
520 |a This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not commonly employed to study machine learning methods. The results outlined in this work provide insight as to what enables and what has an effect on successful reinforcement learning implementations so that this learning method can be applied to more challenging problems. 
650 0 |a Computational intelligence. 
650 0 |a Logic design. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Logic Design. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319121987 
776 0 8 |i Printed edition:  |z 9783319121963 
776 0 8 |i Printed edition:  |z 9783319385518 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-12197-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)