Cargando…

Low-Rank and Sparse Modeling for Visual Analysis

This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding, and learning among unconstrained visual data. Included in the book are chapters covering multiple emerging topics in this new field. The text links multiple pop...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Fu, Yun (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-12000-3
003 DE-He213
005 20220116220147.0
007 cr nn 008mamaa
008 141029s2014 sz | s |||| 0|eng d
020 |a 9783319120003  |9 978-3-319-12000-3 
024 7 |a 10.1007/978-3-319-12000-3  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Low-Rank and Sparse Modeling for Visual Analysis  |h [electronic resource] /  |c edited by Yun Fu. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VII, 236 p. 66 illus., 51 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Nonlinearly Structured Low-Rank Approximation -- Latent Low-Rank Representation -- Scalable Low-Rank Representation -- Low-Rank and Sparse Dictionary Learning -- Low-Rank Transfer Learning -- Sparse Manifold Subspace Learning -- Low Rank Tensor Manifold Learning -- Low-Rank and Sparse Multi-Task Learning -- Low-Rank Outlier Detection -- Low-Rank Online Metric Learning. 
520 |a This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding, and learning among unconstrained visual data. Included in the book are chapters covering multiple emerging topics in this new field. The text links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. This book contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applications. ·         Covers the most state-of-the-art topics of sparse and low-rank modeling ·         Examines the theory of sparse and low-rank analysis to the real-world practice of sparse and low-rank analysis ·         Contributions from top experts voicing their unique perspectives included throughout. 
650 0 |a Computer vision. 
650 0 |a Signal processing. 
650 0 |a Image processing-Digital techniques. 
650 1 4 |a Computer Vision. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Fu, Yun.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319119991 
776 0 8 |i Printed edition:  |z 9783319120010 
776 0 8 |i Printed edition:  |z 9783319355672 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-12000-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)