Cargando…

A Short Course in Ordinary Differential Equations

This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kong, Qingkai (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-11239-8
003 DE-He213
005 20220114170118.0
007 cr nn 008mamaa
008 141021s2014 sz | s |||| 0|eng d
020 |a 9783319112398  |9 978-3-319-11239-8 
024 7 |a 10.1007/978-3-319-11239-8  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Kong, Qingkai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Short Course in Ordinary Differential Equations  |h [electronic resource] /  |c by Qingkai Kong. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 267 p. 55 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Preface -- Notation and Abbreviations -- 1. Initial Value Problems -- 2. Linear Differential Equations -- 3. Lyapunov Stability Theory -- 4. Dynamic Systems and Planar Autonomous Equations -- 5. Introduction to Bifurcation Theory -- 6. Second-Order Linear Equations -- Answers and Hints -- Bibliography -- Index. 
520 |a This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincaré-Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm-Liouville problems. The presentation is clear and easy-to-understand, with figures and copious examples illustrating the meaning of and motivation behind definitions, hypotheses, and general theorems. A thoughtfully conceived selection of exercises together with answers and hints reinforce the reader's understanding of the material. Prerequisites are limited to advanced calculus and the elementary theory of differential equations and linear algebra, making the text suitable for senior undergraduates as well. 
650 0 |a Differential equations. 
650 0 |a Dynamical systems. 
650 1 4 |a Differential Equations. 
650 2 4 |a Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319112404 
776 0 8 |i Printed edition:  |z 9783319112381 
776 0 8 |i Printed edition:  |z 9783319354262 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-11239-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)