Cargando…

Computational Counterpoint Worlds Mathematical Theory, Software, and Experiments /

The mathematical theory of counterpoint was originally aimed at simulating the composition rules described in Johann Joseph Fux's Gradus ad Parnassum. It soon became apparent that the algebraic apparatus used in this model could also serve to define entirely new systems of rules for composition...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Agustín-Aquino, Octavio Alberto (Autor), Junod, Julien (Autor), Mazzola, Guerino (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Computational Music Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-11236-7
003 DE-He213
005 20220117144352.0
007 cr nn 008mamaa
008 150708s2015 sz | s |||| 0|eng d
020 |a 9783319112367  |9 978-3-319-11236-7 
024 7 |a 10.1007/978-3-319-11236-7  |2 doi 
050 4 |a AZ195 
072 7 |a UF  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UXJ  |2 thema 
072 7 |a UXA  |2 thema 
082 0 4 |a 025.060013  |2 23 
100 1 |a Agustín-Aquino, Octavio Alberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computational Counterpoint Worlds  |h [electronic resource] :  |b Mathematical Theory, Software, and Experiments /  |c by Octavio Alberto Agustín-Aquino, Julien Junod, Guerino Mazzola. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 220 p. 57 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Music Science,  |x 1868-0313 
505 0 |a Counterpoint -- First-Species Model -- Preliminary Background -- Quasipolarities and Interval Dichotomies -- Towers of Counterpoint -- Graphs -- Transformations -- Implementation -- Second-Species Model -- Hypergesture Homology -- Glossary -- Index. 
520 |a The mathematical theory of counterpoint was originally aimed at simulating the composition rules described in Johann Joseph Fux's Gradus ad Parnassum. It soon became apparent that the algebraic apparatus used in this model could also serve to define entirely new systems of rules for composition, generated by new choices of consonances and dissonances, which in turn lead to new restrictions governing the succession of intervals. This is the first book bringing together recent developments and perspectives on mathematical counterpoint theory in detail. The authors include recent theoretical results on counterpoint worlds, the extension of counterpoint to microtonal pitch systems, the singular homology of counterpoint models, and the software implementation of contrapuntal models. The book is suitable for graduates and researchers. A good command of algebra is a prerequisite for understanding the construction of the model. 
650 0 |a Digital humanities. 
650 0 |a Music. 
650 1 4 |a Digital Humanities. 
650 2 4 |a Music. 
700 1 |a Junod, Julien.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Mazzola, Guerino.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319112374 
776 0 8 |i Printed edition:  |z 9783319112350 
776 0 8 |i Printed edition:  |z 9783319371672 
830 0 |a Computational Music Science,  |x 1868-0313 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-11236-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)