Cargando…

Instance-Specific Algorithm Configuration

This book presents a modular and expandable technique in the rapidly emerging research area of automatic configuration and selection of the best algorithm for the instance at hand. The author presents the basic model behind ISAC and then details a number of modifications and practical applications....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Malitsky, Yuri (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-11230-5
003 DE-He213
005 20220118225945.0
007 cr nn 008mamaa
008 141120s2014 sz | s |||| 0|eng d
020 |a 9783319112305  |9 978-3-319-11230-5 
024 7 |a 10.1007/978-3-319-11230-5  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Malitsky, Yuri.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Instance-Specific Algorithm Configuration  |h [electronic resource] /  |c by Yuri Malitsky. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a IX, 134 p. 13 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Survey of Related Work -- Architecture of Instance-Specific Algorithm Configuration Approach -- Applying ISAC to Portfolio Selection -- Generating a Portfolio of Diverse Solvers -- Handling Features -- Developing Adaptive Solvers -- Making Decisions Online -- Conclusions. 
520 |a This book presents a modular and expandable technique in the rapidly emerging research area of automatic configuration and selection of the best algorithm for the instance at hand. The author presents the basic model behind ISAC and then details a number of modifications and practical applications. In particular, he addresses automated feature generation, offline algorithm configuration for portfolio generation, algorithm selection, adaptive solvers, online tuning, and parallelization. The author's related thesis was honorably mentioned (runner-up) for the ACP Dissertation Award in 2014, and this book includes some expanded sections and notes on recent developments. Additionally, the techniques described in this book have been successfully applied to a number of solvers competing in the SAT and MaxSAT International Competitions, winning a total of 18 gold medals between 2011 and 2014. The book will be of interest to researchers and practitioners in artificial intelligence, in particular in the area of machine learning and constraint programming. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical optimization. 
650 0 |a Discrete mathematics. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Optimization. 
650 2 4 |a Discrete Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319112312 
776 0 8 |i Printed edition:  |z 9783319112299 
776 0 8 |i Printed edition:  |z 9783319381237 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-11230-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)