Cargando…

Advances in Complex Data Modeling and Computational Methods in Statistics

The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new development...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Paganoni, Anna Maria (Editor ), Secchi, Piercesare (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Contributions to Statistics
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-11149-0
003 DE-He213
005 20220119190209.0
007 cr nn 008mamaa
008 141104s2015 sz | s |||| 0|eng d
020 |a 9783319111490  |9 978-3-319-11149-0 
024 7 |a 10.1007/978-3-319-11149-0  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Advances in Complex Data Modeling and Computational Methods in Statistics  |h [electronic resource] /  |c edited by Anna Maria Paganoni, Piercesare Secchi. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VIII, 209 p. 41 illus., 27 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Contributions to Statistics 
505 0 |a 1 Antonino Abbruzzo, Angelo M. Mineo: Inferring networks from high-dimensional data with mixed variables -- 2 Federico Andreis, Fulvia Mecatti: Rounding Non-integer Weights in Bootstrapping Non-iid Samples: actual problem or harmless practice? -- 3 Marika Arena, Giovanni Azzone, Antonio Conte, Piercesare Secchi, Simone Vantini: Measuring downsize reputational risk in the Oil & Gas industry -- 4 Laura Azzimonti, Marzia A. Cremona, Andrea Ghiglietti, Francesca Ieva, Alessandra Menafoglio, Alessia Pini, Paolo Zanini: BARCAMP Technology Foresight and Statistics for the Future -- 5 Francesca Chiaromonte, Kateryna D. Makova: Using statistics to shed light on the dynamics of the human genome: A review -- 6 Nader Ebrahimi, Ehsan S. Soofi and Refik Soyer: Information Theory and Bayesian Reliability Analysis: Recent Advances -- 7 Stephan F. Huckemann: (Semi-) Intrinsic Statistical Analysis on non-Euclidean Spaces -- 8 John T. Kent: An investigation of projective shape space -- 9 Fabio Manfredini, Paola Pucci, Piercesare Secchi, Paolo Tagliolato, Simone Vantini, Valeria Vitelli: Treelet Decomposition of Mobile Phone Data for Deriving City Usage and Mobility Pattern in the Milan Urban Region -- 10 Cristina Mazzali, Mauro Maistriello, Francesca Ieva, Pietro Barbieri: Methodological issues in the use of administrative databases to study heart failure -- 11 Andrea Mercatant: Bayesian inference for randomized experiments with noncompliance and nonignorable missing data -- 12 Antonio Pulcini, Brunero Liseo: Approximate Bayesian Quantile Regression for Panel Data -- 13 Laura M. Sangalli: Estimating surfaces and spatial fields via regression models with differential regularization.  . 
520 |a The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held at the Politecnico di Milano, 2013. All the papers published here have been rigorously peer-reviewed. 
650 0 |a Statistics . 
650 0 |a Mathematics. 
650 0 |a Biometry. 
650 0 |a Dynamics. 
650 0 |a Nonlinear theories. 
650 0 |a Software engineering. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Biostatistics. 
650 2 4 |a Applied Dynamical Systems. 
650 2 4 |a Software Engineering. 
700 1 |a Paganoni, Anna Maria.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Secchi, Piercesare.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319111506 
776 0 8 |i Printed edition:  |z 9783319111483 
776 0 8 |i Printed edition:  |z 9783319385372 
830 0 |a Contributions to Statistics 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-11149-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)