|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-319-10777-6 |
003 |
DE-He213 |
005 |
20220112120729.0 |
007 |
cr nn 008mamaa |
008 |
141108s2015 sz | s |||| 0|eng d |
020 |
|
|
|a 9783319107776
|9 978-3-319-10777-6
|
024 |
7 |
|
|a 10.1007/978-3-319-10777-6
|2 doi
|
050 |
|
4 |
|a QA370-380
|
072 |
|
7 |
|a PBKJ
|2 bicssc
|
072 |
|
7 |
|a MAT007000
|2 bisacsh
|
072 |
|
7 |
|a PBKJ
|2 thema
|
082 |
0 |
4 |
|a 515.35
|2 23
|
100 |
1 |
|
|a Liebscher, Stefan.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Bifurcation without Parameters
|h [electronic resource] /
|c by Stefan Liebscher.
|
250 |
|
|
|a 1st ed. 2015.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2015.
|
300 |
|
|
|a XII, 142 p. 34 illus., 29 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 2117
|
505 |
0 |
|
|a Introduction -- Methods & Concepts -- Cosymmetries -- Codimension One -- Transcritical Bifurcation -- Poincar´e-Andronov-Hopf Bifurcation -- Application: Decoupling in Networks -- Application: Oscillatory Profiles -- Codimension Two -- egenerate Transcritical Bifurcation -- egenerate Andronov-Hopf Bifurcation -- Bogdanov-Takens Bifurcation -- Zero-Hopf Bifurcation -- Double-Hopf Bifurcation -- Application: Cosmological Models -- Application: Planar Fluid Flow -- Beyond Codimension Two -- Codimension-One Manifolds of Equilibria -- Summary & Outlook.
|
520 |
|
|
|a Targeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts are briefly introduced, a prior knowledge of center-manifold reductions and normal-form calculations will help the reader to appreciate the presentation. Bifurcations without parameters occur along manifolds of equilibria, at points where normal hyperbolicity of the manifold is violated. The general theory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points.
|
650 |
|
0 |
|a Differential equations.
|
650 |
|
0 |
|a Dynamical systems.
|
650 |
1 |
4 |
|a Differential Equations.
|
650 |
2 |
4 |
|a Dynamical Systems.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319107783
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319107769
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 2117
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-319-10777-6
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|