Cargando…

Polynomial Chaos Methods for Hyperbolic Partial Differential Equations Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties /

This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-ba...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Pettersson, Mass Per (Autor), Iaccarino, Gianluca (Autor), Nordström, Jan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Mathematical Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-10714-1
003 DE-He213
005 20220120190900.0
007 cr nn 008mamaa
008 150310s2015 sz | s |||| 0|eng d
020 |a 9783319107141  |9 978-3-319-10714-1 
024 7 |a 10.1007/978-3-319-10714-1  |2 doi 
050 4 |a TA357-359 
072 7 |a TGMF  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGMF  |2 thema 
082 0 4 |a 620.1064  |2 23 
100 1 |a Pettersson, Mass Per.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Polynomial Chaos Methods for Hyperbolic Partial Differential Equations  |h [electronic resource] :  |b Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties /  |c by Mass Per Pettersson, Gianluca Iaccarino, Jan Nordström. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 214 p. 60 illus., 54 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Engineering,  |x 2192-4740 
505 0 |a Random Field Representation -- Polynomial Chaos Methods -- Numerical Solution of Hyperbolic Problems -- Linear Transport -- Nonlinear Transport -- Boundary Conditions and Data -- Euler Equations -- A Hybrid Scheme for Two-Phase Flow -- Appendices. 
520 |a This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The approach described in the text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dimension and one uncertain parameter as its extension is conceptually straightforward. The numerical methods designed guarantee that the solutions to the uncertainty quantification systems will converge as the mesh size goes to zero. Examples from computational fluid dynamics are presented together with numerical methods suitable for the problem at hand: stable high-order finite-difference methods based on summation-by-parts operators for smooth problems, and robust shock-capturing methods for highly nonlinear problems. Academics and graduate students interested in computational fluid dynamics and uncertainty quantification will find this book of interest. Readers are expected to be familiar with the fundamentals of numerical analysis. Some background in stochastic methods is useful but not necessary. 
650 0 |a Fluid mechanics. 
650 0 |a Numerical analysis. 
650 0 |a Continuum mechanics. 
650 1 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Continuum Mechanics. 
700 1 |a Iaccarino, Gianluca.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Nordström, Jan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319107158 
776 0 8 |i Printed edition:  |z 9783319107134 
776 0 8 |i Printed edition:  |z 9783319356129 
830 0 |a Mathematical Engineering,  |x 2192-4740 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-10714-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)