Cargando…

Data Preprocessing in Data Mining

Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Fur...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: García, Salvador (Autor), Luengo, Julián (Autor), Herrera, Francisco (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Intelligent Systems Reference Library, 72
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-10247-4
003 DE-He213
005 20220120234258.0
007 cr nn 008mamaa
008 140830s2015 sz | s |||| 0|eng d
020 |a 9783319102474  |9 978-3-319-10247-4 
024 7 |a 10.1007/978-3-319-10247-4  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a García, Salvador.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Preprocessing in Data Mining  |h [electronic resource] /  |c by Salvador García, Julián Luengo, Francisco Herrera. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 320 p. 41 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4408 ;  |v 72 
505 0 |a Introduction -- Data Sets and Proper Statistical Analysis of Data Mining Techniques -- Data Preparation Basic Models -- Dealing with Missing Values -- Dealing with Noisy Data -- Data Reduction -- Feature Selection -- Instance Selection -- Discretization -- A Data Mining Software Package Including Data Preparation and Reduction: KEEL. 
520 |a Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data. This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering. 
650 0 |a Computational intelligence. 
650 0 |a Computer vision. 
650 0 |a Data mining. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Computer Vision. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Luengo, Julián.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Herrera, Francisco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319102481 
776 0 8 |i Printed edition:  |z 9783319102467 
776 0 8 |i Printed edition:  |z 9783319377315 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4408 ;  |v 72 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-10247-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)