|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-319-10094-4 |
003 |
DE-He213 |
005 |
20220115010432.0 |
007 |
cr nn 008mamaa |
008 |
141009s2014 sz | s |||| 0|eng d |
020 |
|
|
|a 9783319100944
|9 978-3-319-10094-4
|
024 |
7 |
|
|a 10.1007/978-3-319-10094-4
|2 doi
|
050 |
|
4 |
|a QA241-247.5
|
072 |
|
7 |
|a PBH
|2 bicssc
|
072 |
|
7 |
|a MAT022000
|2 bisacsh
|
072 |
|
7 |
|a PBH
|2 thema
|
082 |
0 |
4 |
|a 512.7
|2 23
|
100 |
1 |
|
|a Bilu, Yuri F.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
4 |
|a The Problem of Catalan
|h [electronic resource] /
|c by Yuri F. Bilu, Yann Bugeaud, Maurice Mignotte.
|
250 |
|
|
|a 1st ed. 2014.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2014.
|
300 |
|
|
|a XIV, 245 p. 3 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a An Historical Account -- Even Exponents -- Cassels' Relations -- Cyclotomic Fields -- Dirichlet L-Series and Class Number Formulas -- Higher Divisibility Theorems -- Gauss Sums and Stickelberger's Theorem -- Mihăilescu's Ideal -- The Real Part of Mihăilescu's Ideal -- Cyclotomic units -- Selmer Group and Proof of Catalan's Conjecture -- The Theorem of Thaine -- Baker's Method and Tijdeman's Argument -- Appendix A: Number Fields -- Appendix B: Heights -- Appendix C: Commutative Rings, Modules, Semi-Simplicity -- Appendix D: Group Rings and Characters -- Appendix E: Reduction and Torsion of Finite G-Modules -- Appendix F: Radical Extensions.
|
520 |
|
|
|a In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In this book we give a complete and (almost) self-contained exposition of Mihăilescu's work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume very modest background: a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.
|
650 |
|
0 |
|a Number theory.
|
650 |
|
0 |
|a Universal algebra.
|
650 |
|
0 |
|a Algebra.
|
650 |
1 |
4 |
|a Number Theory.
|
650 |
2 |
4 |
|a General Algebraic Systems.
|
650 |
2 |
4 |
|a Algebra.
|
700 |
1 |
|
|a Bugeaud, Yann.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
700 |
1 |
|
|a Mignotte, Maurice.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319100951
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319100937
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319362557
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-319-10094-4
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|