|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-319-10088-3 |
003 |
DE-He213 |
005 |
20220114113523.0 |
007 |
cr nn 008mamaa |
008 |
150819s2015 sz | s |||| 0|eng d |
020 |
|
|
|a 9783319100883
|9 978-3-319-10088-3
|
024 |
7 |
|
|a 10.1007/978-3-319-10088-3
|2 doi
|
050 |
|
4 |
|a QA331.7
|
072 |
|
7 |
|a PBKD
|2 bicssc
|
072 |
|
7 |
|a MAT034000
|2 bisacsh
|
072 |
|
7 |
|a PBKD
|2 thema
|
082 |
0 |
4 |
|a 515.94
|2 23
|
100 |
1 |
|
|a Mochizuki, Takuro.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Mixed Twistor D-modules
|h [electronic resource] /
|c by Takuro Mochizuki.
|
250 |
|
|
|a 1st ed. 2015.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2015.
|
300 |
|
|
|a XX, 487 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 2125
|
505 |
0 |
|
|a Introduction -- Preliminary -- Canonical prolongations -- Gluing and specialization of r-triples -- Gluing of good-KMS r-triples -- Preliminary for relative monodromy filtrations -- Mixed twistor D-modules -- Infinitesimal mixed twistor modules -- Admissible mixed twistor structure and variants -- Good mixed twistor D-modules -- Some basic property -- Dual and real structure of mixed twistor D-modules -- Derived category of algebraic mixed twistor D-modules -- Good systems of ramified irregular values.
|
520 |
|
|
|a We introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem, and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular. .
|
650 |
|
0 |
|a Functions of complex variables.
|
650 |
|
0 |
|a Algebraic geometry.
|
650 |
1 |
4 |
|a Several Complex Variables and Analytic Spaces.
|
650 |
2 |
4 |
|a Algebraic Geometry.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319100890
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319100876
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 2125
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-319-10088-3
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|