Cargando…

Mathematical Aspects of Quantum Field Theories

Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Calaque, Damien (Editor ), Strobl, Thomas (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Mathematical Physics Studies,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-09949-1
003 DE-He213
005 20220113083744.0
007 cr nn 008mamaa
008 150106s2015 sz | s |||| 0|eng d
020 |a 9783319099491  |9 978-3-319-09949-1 
024 7 |a 10.1007/978-3-319-09949-1  |2 doi 
050 4 |a QC793-793.5 
050 4 |a QC174.45-174.52 
072 7 |a PHP  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
072 7 |a PHP  |2 thema 
082 0 4 |a 530.14  |2 23 
245 1 0 |a Mathematical Aspects of Quantum Field Theories  |h [electronic resource] /  |c edited by Damien Calaque, Thomas Strobl. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XXVIII, 556 p. 145 illus., 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Physics Studies,  |x 2352-3905 
505 0 |a A derived and homotopical view on field theories, Damien Calaque -- Part I Locality in Perturbative QFTs -- 2 Perturbative algebraic quantum field theory, Klaus Fredenhagen and Katarzyna Rejzner -- Lectures on mathematical aspects of (twisted) supersymmetric gauge theories, Kevin Costello and Claudia Scheimbauer -- 4 Snapshots of Conformal Field Theory, Katrin Wendland -- Part II Chern-Simons Theory -- Faddeev's quantum dilogarithm and state-integrals on shaped triangulations, Jørgen Ellegaard Andersen and Rinat Kashaev -- 6 A higher stacky perspective on Chern-Simons theory, Domenico Fiorenza, Hisham Sati and Urs Schreiber -- Factorization homology in 3-dimensional topology, Nikita Markarian & Hiro Lee Tanaka -- Manifoldic homology and Chern-Simons formalism (by Nikita Markarian) -- Factorization Homology and Link Invariants (by Hiro Lee Tanaka) -- Deligne-Beilinson cohomology in U(1) Chern-Simons theories, Frank Thuillier -- Part III (Semi-)Classical Field Theories -- Semiclassical quantization of classical field theories, Alberto S. Cattaneo, Pavel Mnev and Nicolai Reshetikhin -- Local BRST cohomology for AKSZ field theories: a global approach, Giuseppe Bonavolontà and Alexei Kotov -- Symplectic and Poisson geometry of the moduli spaces of at connections over quilted surfaces, David Li-Bland and Pavol Ševera -- Groupoids, Frobenius algebras and Poisson sigma models, Ivan Contreras -- Part IV Algebraic Aspects of Locality -- Notes on factorization algebras, factorization homology and applications, Grégory Ginot -- Index. 
520 |a Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Mathematical physics. 
650 0 |a Physics-Philosophy. 
650 1 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Philosophical Foundations of Physics and Astronomy. 
700 1 |a Calaque, Damien.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Strobl, Thomas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319099484 
776 0 8 |i Printed edition:  |z 9783319099507 
776 0 8 |i Printed edition:  |z 9783319344126 
830 0 |a Mathematical Physics Studies,  |x 2352-3905 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-09949-1  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)